文章编号: 1671-6612 (2019) 05-542-08

高大空间展览温室自然通风 CFD 模型构建

彭淑英 缪智昕

(上海勘测设计研究院有限公司 上海 200434)

【摘 要】 为了解高大空间展览温室自然通风下的气候特点,以华东地区某高大空间展览温室为例,结合植物多孔介质模型,建立了展览温室的全尺度三维自然通风 CFD 模型,并进行了现场实测。现场实测与数值模拟结果表明:晴天工况和阴天工况下,数值模拟温湿度场与实测值基本吻合,平均温度的模拟值与实测值误差在 11.17%以内,平均相对湿度的模拟值与实测值误差在 15.56%以内。建立的高大空间展览温室的 CFD 模型是可行的。

【关键词】 展览温室;自然通风;数值模拟;多孔介质

中图分类号 TU831 文献标识码 A

CFD Modelling of Natural Ventilation of the Large Space Exhibition Greenhouse

Peng Shuying Miao Zhixin

(Shanghai survey and design research institute Co., Ltd, Shanghai, 200434)

(Abstract) In order to understand the climatic characteristics under natural ventilation in a large space exhibition greenhouse, a three-dimensional natural ventilation CFD model was established for a large space exhibition greenhouse in East China. The numerical simulation results show that: the numerical simulation of temperature and humidity field is basically in agreement with the measured value. The error between simulated and measured values of average temperature is less than 11.17%, and the error between simulated and measured values of average relative humidity is less than 15.56%. The CFD model of large space exhibition greenhouse established in this paper is feasible.

Keywords Exhibition Greenhouse; Natural Ventilation; Numerical simulation; Porous media

0 引言

CFD 是解析建筑环境工学中的各种问题和环境设计的强有力的工具^[1]。近几年 CFD 技术在设施园艺领域的应用主要集中在温室微气候模拟方面。它以流体质量、动量和能量三大守恒方程为数值计算的理论依据,结合流体湍流模型对温室内气流模式和温湿度、浓度等因子的空间分布进行二维或三维模拟和预测,并将结果可视化;可以灵活地设定模拟因素的可变及不变;对一些可变因素,如外界气候条件,温室类型及尺寸等,可以任意进行变换。其它的研究方法需要完美的试验设计,精密的仪器及准确的测量才能得到可信的结果,CFD

方法则能节省时间、劳动力及花费[2]。

自然通风是利用温室内外温差与风力作用造 成室内外空气压差,而进行室内外空气交换以排除 室内余热余湿以及提供植物生长所需的二氧化碳 的技术措施。这种通风方式基本上不消耗或很少消 耗动力能源。尽管利用自然通风改善建筑热湿环境 多年来得到了广泛应用,但如何通过合理设计进出 风口的位置、面积来改善高大空间热湿环境等方面 仍存在许多问题有待于进一步研究,而 CFD 方法 是解决这一问题的有效方法,利用 CFD 方法可以 预测高大空间的温湿度场从而进一步优化改善其 热湿环境。本文拟采用 CFD 方法数值模拟某高大

作者(通讯作者)简介: 彭淑英(1966-), 女,本科,高级工程师, E-mail: 534251190@qq.com 收稿日期: 2018-10-16

空间展览温室自然通风的温湿度场,并采集了现场 测试数据对仿真结果进行了验证。

1 材料与方法

图1 展览温室

Fig.1 Exhibition greenhouse

该展览温室为江苏省连云港蔷薇湖生态保护 区展览温室,位于东经118.24°,北纬33.59°。 温室有3个圆形组成,总面积为5225.6m²。温室左 侧圆顶地面半径为30m,高22m;中间圆顶地面半 径为20m,高16m;右侧圆顶地面半径为22m,高 19m;中间圆顶地面圆心与左侧圆顶地面圆心相距 37.992m,两圆心连线与正南方向夹角为25.18°, 右侧圆顶地面圆心与中间圆顶地面圆心相距 34.61m,与正南方向夹角为87.97°。植物区面积约 有 3900m²,建模时植物区简化处理,植物区边缘 距温室地面圆弧约为 4m,高度取植物平均高度 3m。温室顶部开有三个天窗,天窗面积从左至右 分别为 131.4m²、61.8m²、72.7m²,测试时温室下 部未开窗,自然进风口为西南方向的三个门,门的 面积从左至右分别为 12.5m²、12.2m²、22m²,温室 左侧圆顶北部门未开启,面积为 34.42m²。展览温 室详见图 1。该展览温室围护结构为双层 ETFE 膜, ETFE 膜厚度 0.25mm,空气间层 50mm。

现场测试分别于 2018 年 5 月 23 号 14:30 至 16:00、2018 年 5 月 24 号 9:30 至 11:00 进行。测试 时温室天窗和西南方向的三个门全开。第一次测试 时天气晴好无云,风向为西南风。第二次测试时天 气为阴,风向为西南风。测试参数为室内外气象参 数。测试仪器见表 1。测点布置见图 2,植物区平 面坐标以左侧圆顶地面圆心为坐标原点,植物区所 有测点离地面约为 1m。测试数据每半个小时采集 一次,测试期间气象参数比较稳定;植物区测点温 湿度由干湿球温度计采集,同时采集该处测点的土 壤温度以及温室膜表面温度,土壤温度以及温室膜 温度由手持式红外测温仪测量;竖向测点由温湿度 记录仪采集,温湿度记录仪置于防辐射罩内;采样 结束后,所有测试数据均取均值处理。

Fig.2 The measured position

表1 测试仪器

仪器	测试参数	型号	测量范围	精度	数量
温湿度记录仪	竖向测点温湿度和室外温湿度	TH-20R	-20°C \sim 70 $^{\circ}\text{C}$, 0 \sim 100%	± 0.2 °C, $\pm 2\%$	10
干湿球温度计	植物区温湿度		-10∼50°C	0.1 °C	20
手持式红外线测温仪	土壤温度和膜表面温度	testo 830-T4	-30∼400°C	±1 °C	1
手持式热线风速仪	室外风速	testo-405	0-10m/s	±0.1m/s (0.3)	1

2 数值建模

2.1 基本控制方程及湍流模型

自然对流的计算中,通常采用瑞利数 R_a 作为 湍流或层流的判断依据。由于温室尺度很大(高 度达 22m),使得瑞利数 R_a远大于 10¹⁰,参考相 关文献的试验数据亦可以发现,自然对流情况下 温室内气流场瑞利数 R_a远大于 10¹⁰,室内气流通 常可认为是湍流流动^[2-7]。自然通风情况下温室内 空气为不可压缩理想气体,温室内空气流动同时 满足能量守恒方程、动量守恒方程、质量守恒方 程,上述方程可用通用形式描述^[3,6,8-15]:

$$\frac{\partial(\rho\phi)}{\partial t} + div(\rho u) = div(\Gamma grad(\phi)) + s_{\phi} \quad (1)$$

式中: ϕ 为通用变量; s_{ϕ} 为广义源项; Γ 为 广义扩散系数; u为流体速度矢量; $div \ srad$ 为散度和梯度算子。

当 $\phi=1$ 时,该方程为连续方程; ϕ 为速度分 量u、w时,该方程为动量方程; ϕ 为温度T时, 该方程为能量方程。利用式(1)直接计算求解湍 流运动时对内存空间和计算要求非常高,在目前 还不可能在实际工程中采用此方法,通常引入湍 流模型进行简化处理^[16]。本文选取标准 k- ε湍流 模型进行模拟计算,在温室通风研究中,该模型 收敛性较好,且计算结果和实验数据有较好的吻 合度[5,6,10,12,17-23]。近壁区湍流未充分发展, 需加 入标准壁面函数。激活不可压缩理想气体模型描 述热浮力的影响。激活组分输运模型,模型中空 气假设为水蒸气和干空气的混合物,彼此之间没 有发生化学反应,通风过程中各组分传输满足组 分守恒定律。采用 DO 辐射模型计算室外太阳辐 射对室内微环境的影响,采用 solar ray tracing 算 法计算太阳辐射。

2.2 多孔介质模型

参考国内外文献,采用多孔介质模型来模拟 植物的影响。为了反映植物对空气有拖动效应, 通过基本控制方程的动量方程源项来体现,这个 源项有两部分构成,一部分是粘性损失即 Darcy 定律,另一部分是内部阻力损失。假设植物为各 向同性,对于同质多孔介质来说^[24]:

$$s_{\phi} = -\left(\frac{\mu}{a}u + Y\rho |u|\frac{u}{2}\right)$$
式中: s_{ϕ} 为动量源项; a 为多孔介质的渗透

率,取 0.395m²,其倒数为粘性阻力系数^[3];Y 为 非线性动量损失系数,即惯性阻力系数;µ为动 力粘度;u 为空气速度。

考虑到植物冠状层内空气速率很小,因此粘 滞阻力通常可以忽略,所以只需要计算惯性阻力, 即:

$$s_{\phi} = -Y\rho |u| \frac{u}{2}$$

动量方程中单位体积植物冠层阻力引起的源 项可转化为:

$$s_{\phi} = -Y\rho \mid u \mid \frac{u}{2} = -\rho I_{LA}C_{d}u^{2}$$

式中, I_{LA} 为叶面积密度(定义为叶面积指数 与植物高度的比值), C_d 为单位体积植物冠层的 惯性损失系数, C_d 通常由风洞试验测得,对于不同 的形状和大小的植物差别很小^[25], 这里 C_d 取 =0.32, 根据文献叶面积指数取 6m²/m², 叶面积 密度取 2m²/m³, 可得惯性阻力系数为 1.28m⁻¹。

室内空气与植物之间除了质量交换之外还有 能量交换。为了反映植物与空气之间的能量交换, 通过基本控制方程的能量方程源项来体现,能量 交换包括显热和潜热,可表示为:

$$s_{\phi} = Q_{sen} + Q_{lat}$$

$$Q_{sen} = 2I_{LA}\rho C_{P} \frac{T_{c} - T_{i}}{r_{a}}$$

$$Q_{lat} = I_{LA}\rho\lambda \frac{w_{c} - w_{a}}{r_{a} + r_{s}}$$

式中: R_{abs} 为辐射量; λ 为蒸发潜热; Q_{sen} 、 Q_{lat} 为显热和潜热交换量; r_a 、 r_s 为叶片空气动 力学阻力和气孔阻力; T_c 、 T_i 为植物叶片表温和 植物附近温度; w_c 、 w_a 为植物和附近空气的绝 对湿度; I_{LA} 为叶面积密度; ρ 为空气密度; C_p 为固定大气压下空气比热。

其中,内部气流速度小于 0.1ms-1,取

$$r_a = 840 \left(\frac{d}{|T_c - T_i|}\right)^{0.2}$$

采用多孔介质模型来模拟植物对空气流动的 拖动效应通过源项加载到动量方程中体现。温室 内植物在自然通风条件下将截获的太阳辐射以显 热和潜热的形式与周围空气进行质热交换,温室 中植物冠层与室内空气存在温差,植物—环境之 间显热交换量主要由植物冠层的空气动力学特性 决定,植物和环境之间的显热和潜热交换是一个 动态过程,显热交换以能量的形式进行,计算所 得的显热能量在能量控制方程中以源项的形式进 行自定义。植物吸收太阳辐射通过蒸腾作用转化 成汽化潜热,并影响温室内相对湿度的分布,以 自定义源项的形式增加到组分方程中求解。

2.3 离散化及边界条件

计算域的选取和网格划分的精细程度会对计 算精度产生直接影响。考虑到展览温室尺寸较大 以及计算机的实际计算能力,以温室实际空间为 计算域建立模型。本文利用 ICEM CFD 18.0 划分 非结构化四面体网格,并在天窗及入口处进行加 密处理,以适应流场梯度变化大的要求,经反复 尝试,最终生成 4486075 个网格。

边界条件依据实验数据设置,见表2。第一次测试时风向为西南风,温室入口位于西南方向。因此本文并未采用多数文献直接给出入口处风速的做法,而是将入口处风速转换成风压,尝试采用以通风口入口(vent-inlet)设定风压给定边界条件的方法来对通风状况下温室内环境进行模拟^[26],避免扩大计算域导致的运算量较大的问题, 天窗边界条件设置为通风口出口(vent-outlet)边界。风速转换成风压的公式为:

 $p_o = p_s + 0.5\rho v^2$

式中, p_o 为总压, p_s 为静压, ρ 为空气密度,v是风速。 p_o 和 p_s 都是表压。

表2 边界条件

Table 2	Boundary condition		
会粉	边界条件值		
<i>参</i>	2018.5.23	2018.5.24	
外界空气温度(℃)	31	23.9	
外界空气相对湿度	34.05%	57.13%	
外界风速(m/s)	2.2	1.2	
重力加速度	9.81	9.81	
湍流强度	5%	5%	
湍流粘性比	10%	10%	
入口风压 (Pa)	2.9	1.3	
出口风压 (Pa)	0	0	
土壤温度(℃)	23	19	
ETFE 膜表面温度(℃) 30	20.6	

材料的热学和光学属性见表 3 所示。

Table 3 Material optical and thermal parameters						
参数	ETFE 膜	土壤	作物			
密度/ (kg·m³)	1730	2000	1001			
热导率/(W(mK) ⁻¹)	2300	1550	3300			
比热/(J(kg K) ⁻¹)	0.33	1.58	0.4			
吸收率	0	0.9	0.95			
散射系数	0.3	-15	0			
折射率	1.52	1.92	1.51			
发射率	0.55	0.9				

表 3 材料光学和热学属性

2.4 求解方法

求解过程是利用分离求解器以求解压力耦合 方程组的半隐式方法(SIMPLE)进行迭代计算 求解。选择体积力加权法进行压力离散。求解时, 求解器设为稳态分析,以一阶迎风格式计算,能 量残差收敛标准设为10⁻⁶,其他变量残差收敛标 准设为10⁻³。数值仿真以 ANSYS Fluent 18.0 作为 通用 CFD 求解器。

3 结果与分析

3.1 CFD 模型验证

图 3 给出了温室内各测点的温度实验值和模拟值。从图 3 可以看出第一次时温度模拟值与实测值偏差在 0.1~2.1℃之间,最大误差为 7.95%, 平均误差 2.64%;相对湿度模拟值与实测值偏差 在 0~9%之间,最大误差为 15.56%,平均误差 9.81%。第二次测试时温度模拟值与实测值偏差 在 0~2.3℃之间,最大误差 11.17%,平均误差 3.04%;相对湿度模拟值与实测值偏差在 0%~ 10%之间,最大误差 14.29%,平均误差为 6.58%。 距地面 1m 的平面测点 1~测点 20 的温度模拟值 较实测值大,其原因在于数值模型中忽略了温室 地面蒸发作用和温室景观水池水面蒸发作用,竖 向测点 21~测点 29 温度模拟值较实测小,可能 的原因仪器悬挂在高空,无树木遮挡,受到太阳 辐射作用使测量值升高;因温湿度的耦合作用, 相对湿度的情况相反。数值模拟结果能够较真实 有效地反映实际温室内温、湿度情况。

3.2 温室内流场分析

(1) 温室内温湿度、速度水平分布

(b) 阴天工况 图 4 温室内距地 1m 处横向温湿度分布

晴天工况和阴天工况下温室内距地 1m 处水 平面温湿度分布见图 4。由图可知,受作物冠层 阻力作用,温室入口处温湿度梯度明显,因温室 外温度比温室内温度要高,温室入口处的温度较 高,受温室内植物产湿影响,室内相对湿度远大 于室外相对湿度,在左侧圆顶中部附近相对湿度 达到最大。阴天工况下相对湿度远大于晴天工况 下的相对湿度。

晴天工况和阴天工况下温室内距地 1m 处水 平面速度分布见图 5。由图 5 可知,进风口至植 物区附近速度梯度明显,整个植物区速度较小, 表明自然通风情况下植物的阻力作用对温室内气 流有明显影响。

Fig.5 The air velocity and RH at the Z=1m plane

(2)温室内温湿度、压强、速度垂直分布 分别选取温室入口中点处过对应圆顶地面圆 心垂直截面,晴天工况下其温湿度、压强、速度 矢量垂直分布见图6。由图6可知,温室内热压 作用明显,出现明显的垂直压力梯度。由于温室 高度达22m,而自然通风进风口位于底部且开口 不大,因而中和面位置接近天窗;中部圆顶天窗 以下均为负压,导致中部圆顶天窗出现回流,受 回流影响中部圆顶室内空气温度较其他区域高, 相对湿度较其他区域低。室外空气温度高于室内 空气,进风气流直接受热浮力作用攀升进而由天 窗排出。

图 6 晴天工况下温湿度垂直分布

Fig.6 Vertical distribution of temperature and relative humidity under clear weather conditions

阴天工况下温室内温湿度、压强、速度矢量 垂直分布见图 7。由图 7 可知,阴天工况下温室 内通风主要受风压作用影响。由于入口风速较小, 室外空气对温室气流的影响主要在进风口处,温 室内大部分区域温湿度较为均匀,温度大致在 22℃左右,相对湿度大致在 75%~80%。室外空 气温度高于室内空气,进风气流直接受热浮力作 用攀升进而由天窗排出。

晴天工况与阴天工况下,进风口附近温湿度 均出现明显的梯度,温室最底部即植物冠层内部 气流流速明显减弱,冠层上方流速较快,表明植 物作物冠层的阻力作用对室内气流分布模式有影 响。

图 7 阴天工况下温湿度垂直分布

4 结论

(1)构建了高大空间展览温室自然通风 CFD模型,通过现场2组实验表明了CFD计算 值与各测点平均温湿度实测值基本吻合,平均温 度的模拟值与实测值误差在11.17%以内,平均相 对湿度的模拟值与实测值误差在 15.56%以内。采 用多孔介质模型和组份传输模型所建立的 CFD 数值模型有效。

(2)进风口附近温湿度出现明显的梯度,植物冠层内部气流流速明显减弱,冠层上方流速较快,表明植物作物冠层的阻力作用对室内气流分布模式有影响。

(3)晴天室内温度较阴天时略高,相对湿度 则略低,太阳辐射强度对植物蒸腾影响明显。晴 天温室内通风受热压作用影响显著,阴天工况室 内通风主要受风压作用影响。晴天和阴天工况下 进风温度均比室内温度高,进风气流直接受热浮 力作用攀升进而由天窗排出。

参考文献:

- [1] 村上周三.CFD 与建筑环境设计[M].北京:中国建筑 工业出版社,2007.
- [2] 侯翠萍,马承伟.FIUENT 在研究温室通风中的应用 [J].农机化研究,2007,(7):5-9.
- [3] 程秀花.温室环境因子时空分布 CFD 模型构建及预 测分析研究[D].苏州:江苏大学,2011.
- [4] 何科奭,陈大跃,孙丽娟,等.不同风况和开窗配置对夏季单栋塑料温室微气候的影响[J].农业机械学报,2017,(12):311-318.
- [5] 何科奭,孙丽娟,黄震宇,等.南方连栋塑料温室冬季通风除湿开窗优化[J].农业机械学报,2012,43(11):186-191.
- [6] 吴飞青,胥芳,张立彬,等.基于多孔介质的玻璃温室加热环境数值模拟[J].农业机械学报,2011,42(2):180-185.
- [7] WANG S, BOULARD T. Measurement and prediction of solar radiation distribution in full-scale greenhouse tunnels[J]. Agronomie, 2000,20(1):41-50.
- [8] BOURNET P E, SAOULD K, BOULARD T. Numerical prediction of the effect of vent arrangements on the ventilation and energy transfer in a multi-span glasshouse using a bi-band radiation model [J]. Biosystems Engineering, 2007,98(2):224-234.
- [9] 陈加浪,陈大跃,何科奭,等.单栋塑料大棚在高温低风 速下的自然通风数值研究[J].农机化研究,2011,33(8): 19-22.

- [10] 程秀花,毛罕平,倪军.风速对温室内气流分布影响的 CFD 模拟及预测[J].农机化研究,2010,32(12):15-18.
- [11] HUSSAIN S, OOSTHUIZEN P H. Numerical investigations of buoyancy-driven natural ventilation in a simple atrium building and its effect on the thermal comfort conditions[J]. Applied Thermal Engineering, 2012,40(7):358-372.
- [12] BOULARD T, ROY J-C, POUILLARD J-B, et al. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics[J]. Biosystems Engineering, 2017,158:110-133.
- [13] MISTRIOTIS A, ARCIDIACONO C, PICUNO P, et al. Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds[J]. Agricultural & Forest Meteorology, 1997,88(1–4):121-135.
- [14] KICHAH A, BOURNET P-E, MIGEON C, et al. Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse [J]. Biosystems Engineering, 2012,112(1):22-34.
- [15] NEBBALI R, ROY J C, BOULARD T. Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse [J]. Renewable Energy, 2012,43:111-129.
- [16] 王福军.计算流体动力学分析:CFD 软件原理与应用 [M].北京:清华大学出版社,2004.
- [17] NEBBALI R, ROY J C, BOULARD T, et al. Comparison of the accuracy of different CFD turbulence models for the prediction of the climatic parameters in a tunnel greenhouse[J]. Acta Horticulturae, 2006,719(719):287-94.

- [18] 程秀花,毛罕平,倪军.基于 CFD 的自然通风玻璃温室 湿热环境模拟与测试[J].扬州大学学报(农业与生命 科学版),2010,31(3):90-94.
- [19] 程秀花,毛罕平,伍德林,等.栽有番茄的玻璃温室内气流场分布 CFD 数值模拟[J].江苏大学学报(自然科学版),2010,31(5):510-514.
- [20] HE K, CHEN D, SUN L, et al. Effects of vent configuration and span number on greenhouse microclimate under summer conditions in eastern china [J]. International Journal of Ventilation, 2016,13(4):381-396.
- [21] HE K-S, CHEN D-Y, SUN L-J, et al. The effect of vent openings on the microclimate inside multi-span greenhouses during summer and winter seasons[J]. Engineering Applications of Computational Fluid Mechanics, 2015,9(1):399-410.
- [22] BOURNET P E, KHAOUA S A O, BOULARD T, et al. Effect of Roof and Side Opening Combinations on the Ventilation of a Greenhouse Using Computer Simulation[J]. Transactions of the Asabe, 2007,50(1):201-212.
- [23] 吴飞青.温室冬季热环境数值分析与实验研究[D].杭 州:浙江工业大学,2010.
- [24] INC. A. ANSYS FLUENT 14 User 's Guide [M]. 2011.
- [25] MOLINAAIZ F D, VALERA D L, ÁLVAREZA J, et al. A wind tunnel study of airflow through horticultural crops: Determination of the drag coefficient [J]. Biosystems Engineering, 2006,93(4):447-457.
- [26] 曹雯.秋冬季南方单栋塑料温室小气候分析与温湿 环境模拟研究[D].南京:南京信息工程大学,2012.