文章编号: 1671-6612 (2020) 05-538-07

VAV-Box 室温分数阶串级控制系统的数值研究

孙智冬 李绍勇 陈宗帅 贺冬辰

(兰州理工大学土木工程学院 兰州 730050)

- 【摘 要】目前,空调房间所配置的风机型变风量末端装置(Variable Air Volume Box, VAV-Box)往往采用 整数阶 PID 或 PID-PI 串级的调节方式,会导致室温控制的稳态误差和超调量均较大以及室内静 压波动的问题。鉴于此,本文提出了风机型 VAV-Box 室温 PI^AD^µ-室内送风量 PI^A串级控制策略和 修正的人群搜索算法实施控制器参数整定的设计理念。首先,结合空调工艺要求和自动控制技术, 对风机型 VAV-Box 作用下的室温被控对象、室内温度和室内送风量测量变送器、室温 PI^AD^µ控制 器、室内送风量 PI^A控制器、变频器和送风机分别进行建模 其次,构建修正的人群搜索算法对 PI^AD^µ 和 PI^A两个控制器的 8 个参数进行整定,获取最佳值;最后,借助 MATLAB 工具,对该串级调节 系统进行组态和数值模拟其控制效果。结果表明:基于修正的人群搜索算法的 PI^AD^µ 和 PI^A控制器 参数整定和该串级调节系统在理论上是可行的,且相应的室温控制性能指标满足空调工艺的相关 要求。
- 【关键词】 变风量空调系统;风机型 VAV-Box;分数阶 PID 控制;修正的人群搜索算法;控制器的参数整定; 数值仿真
- 中图分类号 TU831 文献标识码 A

MSOA-based Indoor Temperature Fractional Cascade Controller Parameter Setting Strategy

Sun Zhidong Li Shaoyong Chen Zongshuai He Dongchen

(School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050)

(Abstract) At present, a VAV-Box with fan insatlled in each air-conditioning room is usually controlled by the modes of integer order PID or PID-PI cascade, which results in the problems of indoor temperature control with larger steady state error and overshoot and indoor static pressure fluctuations. In view of these problems, this paper presents the ideas of designing the cascade control policy of fractional order PID primary controller for indoor temperature and fractional order PI secondary controller for indoor supply air volume and modified seeker optimization algorithm for tuning parameters of tuning parameters of these two controller. Firstly, on the basis of the requirements of air-conditioning process and automatic control technology, the controlled plant of indoor temperature, measuring transmitters of indoor temperature and indoor supply air volume, fractional order PID primary controller PI secondary controller for indoor temperature, measuring transmitters of indoor temperature and indoor supply air volume, fractional order PID primary controller for indoor temperature, fractional order PI secondary controller for indoor supply air volume, tractional order PID primary controller for indoor temperature, fractional order PI secondary controller for indoor supply air volume, tractional order PID primary controller for indoor temperature, fractional order PI secondary controller for indoor supply air volume, variable frequency controller and supply fan are modeled, respectively. Secondly, a modified seeker optimization algorithm is reconstructed to continuously tune eight parameters of these two controllers until the corresponding optimal values are obtained. Finally, the configuration of this fractional order PID cascade control system and the numerical simulation of its control effect are carried out by means of MATLAB tool. The results indicate that tuning parameters of PI^λD^µ and PI^λ controller based on the modified seeker

基金项目: 兰州理工大学博士研究基金项目(B04-237); 兰州理工大学建工七七基金项目(TM-QK-1301)

作者简介: 孙智冬 (1993-), 女, 在读硕士研究生, E-mail: 1149304718@qq.com

通讯作者: 李绍勇 (1966-), 男, 博士, 教授, E-mail: lishaoyong99@163.com

收稿日期: 2019-11-26

optimization algorithm and the proposed fractional order PID cascade control system are feasible in theory, and the related control indexes of indoor temperature can meet the relevant requirements of air-conditioning technology.

(Keywords) Variable air volume air-conditioning system; VAV-Box with fan; fractional order PID control; modified seeker optimization algorithm; tuning parameters of controller; numerical simulation

0 引言

随着人们生活水平的显著提高和健康理念的 强化深入,室内环境的舒适性已被广泛专注。变风 量空调系统(Variable Air Volume Air Conditioning System, VAVACS)作为一种舒适、安全、节能的 新型空调系统代表,已成为国内外空调工程应用的 主流,而安装在空调房间内的 VAV-Box 运行工况 如何,则对表征室内舒适性的关键参数一室内温度 存在着显著的影响[1]。空调房间室温对象具有非线 性、时滞和结构参数变化等特性, 使得目前常用控 制方式,如 VAV-Box 室温 PID 单回路^[2]往往出现 室温稳态误差和超调量均过大、调节时间长和室内 压力波动的问题; 而室温 PID-室内送风量 PI^[3]或 室温 PI^AD^µ一室内送风量 PI 串级控制系统^[1]尽管能 消除室内压力波动,但会出现室温稳态误差和超调 量较大、调节时间较长等问题。此外,不同的控制 算法[4]和不同类型的 VAV-Box^[5]也会对室温的控 制及室内舒适度有着很大的影响。为此,研究人员 始终在寻求性能优良,易于实现的控制方法及其控 制器。

对于风机型 VAV-Box 作用下的空调房间,为 进一步提高室温控制性能和消除室内压力波动的 影响,本文提出室温 PI^AD^µ一室内送风量 PI^A串级控 制策略。同时,受启于模糊数学中的S型隶属度函 数^[6],构建非线性变化的新变量 v,将标准人群搜 索算法 (Standard Seeker Optimization Algorithm, SSOA)中的线性变化惯性权值 ω 进行替换,构建 出修正的人群搜索算法 (Modified Seeker Optimization Algorithm, MSOA), 对 $PI^{\lambda}D^{\mu} - PI^{\lambda}$ 两 控制器的8个参数进行整定,获取其最佳值。这样, 分别作用在该串级调节系统的主回路(Main Loop, ML)中的室温 PI^AD^µ 控制器(Indoor Temperature Fractional Order PID Controller, IT-FOPIDC) 和副 回路(Auxiliary Loop, AL)中的室内送风量 PI^A控 制器 (Indoor Supply Air Volume Fractional Order PI Controller, ISAV-FOPIC)串级联动,输出更为 精准的控制指令给每个空调房间的风机型

VAV-Box,动态地送入随室内空调负荷变化的冷、 热风量,满足 $T_n=T_{n,set}\pm\Delta T$ 的空调工艺要求,且有 效地克服冷、热风量变化所导致的室内压力 P_n 波 动的影响。同时,IT-FOPIDC 和 ISAV-FOPIC 充分 发挥其整定参数多,可调范围广的优势,可进一步 降低室温稳态误差和超调量和减少调节时间。

1 VAV-Box 的室温控制

VAV-Box 是 VAVACS 中的重要末端装置,承 担着处理空调房间冷、热负荷变化,保证室温达标 的任务。类似于压力无关型基本型 VAV-Box 的控 制方式,对于风机型 VAV-Box,本文将分数阶串 级调节方式施控于它,相应的空调工艺控制原理如 图 1 所示。

图 1 风机型 VAV-Box 空调工艺控制原理图

Fig.1 Principle diagram of air-conditioning process

control for VAV-Box equipped with fan

TT1 将室温信号 T_n 传给 TC, TC 根据 TT1 传 送的反映室温 T_n 信号,进行求偏差 $\Delta T=T_{n,set}-T_n$ 。 且对 ΔT 进行相应的 PI^AD^µ运算后,输出控制指令, 即空调房间所需送风量的设定值 $F_{n,set}$ 给 FC。同时, FC 根据 FT 传送的反映室内送风量 F_n 信号,也进 行 $\Delta F=F_{n,set}-F_n$ 和对 ΔF 进行相应的 PI^A运算后,输 出控制指令 p 给 VFC。VFC 则输出变化的供电频 率信号 f,使得 SF 转速 n 发生变化。这样,送入空 调房间的冷、热风量 q_v 也发生相应的变化,与室 内空气进行热交换,循环往复,从而使得 $T_n \approx T_{n,set}$, 年

2 室温 PI[∧]D^µ - 送风量 PI[∧] 串级控制系 统组成环节的建模

2.1 室温模型构建

空调房间室温对象属于大惯性、时滞等特性的 热工过程对象,其模型可用二阶惯性环节加纯滞后 的传递函数来表示^[7,8]。

$$G(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)} e^{-\tau s} = \frac{3.06}{(300 + 1)(10 + 1)} e^{-30s} \quad (1)$$

式中, *K* 为室温调节通道的放大系数; *T*₁、*T*₂ 为室温调节通道的第一、第二时间常数, s; τ 为室 温调节通道的滞后时间, s。

2.2 室温和室内送风量测量变送器的 I/O 特性

室温和室内送风量测量变送器分别作用在串级调节系统的主、副回路的反馈通道上,发挥实时测量 *T*_n和 *F*_n的大小,并反馈到系统的主、副回路的输入端的作用。室温和室内送风量测量变送器均视为比例环节^[9],对应的数学模型分别为 *H*₁=1 和 *H*₂=1。

2.3 送风机的 I/O 特性

送风机属于复杂的动态控制系统。为使问题简 单化,可将其近似成一个输入信号为转速 n,输出 信号为送风量的一阶惯性环节^[5]来描述。

$$G_{\rm SF} = \frac{K_{\rm SF}}{T_{\rm SF}s + 1} = \frac{5.2}{2s + 1} \tag{2}$$

式中, K_{SF} 为输入频率f与输出转速n的比值; T_{SF} 为转速n由零到稳态值的启动时间除以4。

2.4 变频控制器的 I/O 特性

变频器大多采用压频比(U/f=常数)的控制方式, 即改变其供电电源的输出频率f,且保持输出电压 U和相应频率f之比为恒定值^[5]。忽略时间滞后, 可用一个一阶惯性环节来描述。

$$G_{\rm VFC} = \frac{K_{\rm VFC}}{T_{\rm VFC}s + 1} = \frac{0.2}{2s + 1} \tag{3}$$

式中, *K*_{VFC} 为 VFC 的压频比, %; *T*_{VFC} 为 VFC 的时间常数, s。

2.5 室温 PI^AD^µ和室内送风量 PI^A控制器的 I/O 特性

FOPID 控制器比常规 PID 控制器多了积分阶

次λ和微分阶次μ,其不但保留了 PID 的所有优点, 而且调节能力与范围更加精准和更广^[10]。室温 PI^λD^μ 和室内送风量 PI^λ控制器的传递函数如下所 示。

$$G_{\text{IT-FOPIDC}} = K_{\text{P,M}} + \frac{K_{\text{I,M}}}{s^{\lambda_{\text{M}}}} + K_{\text{D,M}} s^{\mu_{\text{M}}}$$
(4)

$$G_{\rm ISAV-FOPIC} = K_{\rm P,A} + \frac{K_{\rm I,A}}{s^{\lambda_{\rm A}}}$$
(5)

式中, $K_{P,M}$ 、 $K_{I,M}$ 、 $K_{D,M}$ 、 λ_M 和 μ_M 为室温 $PI^{\lambda}D^{\mu}$ 控制器的比例系数、积分系数、微分系数、积分阶次和微分阶次; $K_{P,A}$ 、 $K_{I,A}$ 和 λ_A 为室内送风量 PI^{λ} 控制器的比例系数、积分系数和积分阶次。

需要说明的是,以上控制器的各参数大小均通 过下节中的 MSOA 整定而得到。

3 修正的人群搜索算法

SSOA 是通过模拟人类搜索的"经验梯度"和 不确定推理,分别确定搜索步长和方向,完成位置 更新,实现对所求问题解的优化。但是,SSOA 中 影响其搜索步长和方向的重要参数ω的线性递减 会导致搜索结果次优或早熟和多样性变差^[11]。

基于非线性递减 S 型隶属度函数^[6],本文构建 新变量 v,使得 v 随迭代次数 t 增加而非线性递减, 新变量 v 如式(6)所示。

$$\upsilon = \frac{\lambda}{1 + e^{-\alpha(\frac{Kt}{T_{\text{max}}} - \beta)}}$$
(6)

式中, λ , α , β 为常数项,一般, λ =1.72, α =-2.6, β =0;t、 T_{max} 为当前迭代次数、最大迭代 次数; $v \in [0.24, 0.82]$ 。

将 SSOA 中的 ω 用式 (6) 替换,其余算式和 参数均保持不变,构建了 MSOA 如下:

Step1: 初始设定MSOA基本参数,确定搜寻者 个体位置*p*_i;

Step2:: 计算搜寻者个体的适应度值 J;

Step3: 若 $J < g_{i,best}$ (第i个搜寻个体所在邻域的集体历史最佳位置),则J 替换 $g_{i,best}$;反之,则保留 $g_{i,best}$;

若 $J < p_{i,best}$ (第 i 个体目前为止所经历的最佳 位置),则 J 替换 $p_{i,best}$;反之,则保留 $p_{i,best}$;

Step4: 基于式(6) 计算出的 v 替代 SSOA 中

孙智冬,等: VAV-Box 室温分数阶串级控制系统的数值研

的ω,以确定搜索步长 α_{ii}和方向 d_{ii};

Step5: 进行搜寻者个体位置更新;

Step6: 若满足 *t=T*_{max}, 输出结果, 算法结束; 否则转至 **Step2**。

究

3.1 基于经典测试函数的 MSOA 验证

为验证 MSOA 的有效性,选取函数 Rastrigin 作为测试算例,其表达式如下^[7]:

$$f(x) = \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i) + 10), |x_i| \le 5.12 \quad (7)$$

将 MSOA 和 SSOA 分别作用于它,进行算法 性能的测试与比对。这里,min f(x)作为适应度函 数 *J*, MSOA 与 SSOA 相关参数设置为:种群规模 Size=30;搜索空间维数 *D*=30; T_{max} =500; $\omega \in$ [0.1,0.9], $v \in$ [0.24,0.82]。两种算法分别运行 10 次, 运算结果见表 1,相应的适应度函数 *J* 进化过程如 图 2 所示。

表1 两种算法的性能对比

J 算法	理论 极值	平均值	最优值	最差值
SSOA	0	14.722	6.325	22.944
MSOA	0	4.712	1.038	7.066

图 2 基于 Rastrigin 函数测试的 MSOA 和 SSOA 适应度函数 J 进化过程

Fig.2 Evolutionary processes of fitness function *J* for Rastrigin function obtained by MSOA and SSOA

分析表1和图2,在整个迭代过程中,MSOA 收敛性较 SSOA 好。

图 3 和图 4 分别给出了 MSOA 和 SSOA 在迭 代次数 *t*=10, 100, 300 和 500 次时,相应的迭代

分析图 3 和图 4, 在算法的整个迭代执行过程 中,基于 SSOA 搜索的种群很快进入早熟状态,且 多样性表现为在早期较好,后期不好;而基于 MSOA 搜索的种群则未出现早熟问题,且收敛性与 多样性的表现均一直较好。所以,从算法执行的收 敛性和多样性而言,MSOA 的综合寻优能力比 SSOA 得到了较大的提升。

3.2 基于 MSOA 的 PID 控制器参数整定的验证

进一步,选取 $G_P = \frac{1.6}{s^2 + 2.584s + 1.6}$ 作为单位闭

环 PID 负反馈控制系统中的被控对象传递函数^[12], 从而验证 MSOA 应用于 PID 控制器参数整定的可 行性。

基于单回路 PID 控制系统性能指标,选取时间 乘误差绝对值的 ITAE 作为适应度函数,分别应用 MSOA SSOA 和 Z-N 法来整定该 PID 控制器的 3 个参数,获取的结果如表 2 所示。这里,SSOA 与 MSOA 相关参数设置:

D=3; Size=30; $T_{max}=100$; $\omega \in [0.1, 0.9]$; $\nu \in [0.24, 0.82]_{\circ}$

表 2 PID 控制器参数的整定值

Table 2 Tuning values of three parameters for PID

controller						
参数 整定法	K_{P}^{*}	K_{I}^{*}	K_{D}^{*}			
Z-N法	12.453	2.281	0.109			
SSOA	0.715	0.806	0.091			
MSOA	1.372	0.961	0.120			

相应的该单位闭环 PID 负反馈控制系统动态 响应曲线,如图 5 所示。

图 5 不同 PID 控制器参数值的单位闭环负反馈控制系统 的动态响应曲线

Fig.5 The dynamic response processes of a unit closed-loop negative feedback PID control system with different controller's values

第 34 卷第 5 期	孙智冬,等	: VAV-Box 室温分数阶串级控制系统的数值研
	究	• 543 •

分析图 5 可知,对于相同的被控对象,基于 MSOA 整定的 PID 控制器参数值,其闭环控制系 统的性能指标,如最大偏差、超调量和调节时间等, 均好于 Z-N 法和 SSOA 整定的 PID 控制器参数值 的相应闭环控制系统。这表明 MSOA 应用在 PID 控制器参数的整定是可行的。

4 数值仿真

4.1 VAV-Box 室温控制系统运行模式

如上所述,本研究拟进行风机型 VAV-Box 作 用下的空调室温 PI^AD^µ 一室内送风量 PI^A 串级控制 策略和基于 MSOA 的控制器参数整定的研究,相 应的调节系统方框图如图 6 所示。

图 6 室温 PI^AD^µ-室内送风量 PI^A 串级调节系统方框图

Fig.6 Block diagram of the cascade control system of indoor temperature PI^AD^µ and indoor supply air volume PI^A

室温测量变送器将反映室温 T_n 的测量值 z_2 传 送给室温 $Pl^{\lambda}D^{\mu}$ 控制器,与 $T_{n,set}$ 相比较,求取 $e_1=T_{n,set}$ - T_n 。 e_1 被分为 2 路输送: 1 路输送到 min ITAE,基于 MSOA 的运行,连续整定出[$K_{P,M}$ 、 $K_{I,M}$ 、 $K_{D,M}$ 、 λ_M 、 μ_M 、 $K_{P,A}$ 、 $K_{I,A}$ 、 λ_A]数值和刷新主、副控 制器的 8 个参数设置;另 1 路进行相应的 $Pl^{\lambda}D^{\mu}$ 运算 和输出控制指令 U_1 作为室内送风量 Pl^{λ} 控制器的设 定值。同样通过室内送风量 q_v 的测量值 z_2 与 U_1 相 比较,求取 $e_2=U_1-z_2$,进行相应的 Pl^{λ} 运算后,输出 控制指令 U_2 给 VFC。VFC 则输出连续变化的供电 频率 f,使得 SF 转速 n 和冷、热送风量 q_v 都发生 变化,以克服室内外的热干扰和室内风压 P_n 波动 的影响,使得 $T_n=T_{n,set}\pm\Delta T_{n,set}$,满足空调工艺要求。 4.2 室温 $Pl^{\lambda}D^{\mu}$ 一室内送风量 Pl^{λ} 串级控制系统的 数值模拟

首先,根据 FOPID 控制器的参数区间^[1],相应 地增大 15%,可计算出该室温 PI^AD^µ-室内送风量 PI^λ串级控制器的 8个参数上、下限区间: $K_{P,M} \in [0,22]$, $K_{I,M} \in [0,0.5]$, $K_{D,M} \in [0,80]$, $\lambda_M \in [0,1.15]$, $\mu_M \in [0,2]$, $K_{P,A} \in [0,35]$, $K_{I,A} \in [0,1.2]$ 和 $\lambda_A \in [0,1.1]$ 。

其次,根据舒适性空调工艺过程和室温要求, 空调夏、冬季的室内初始温度 $T_{n,0}$ 和 $T_{n, set} \pm \Delta T_{n,set}$ 见表 3 所示。

此外,考虑到空调房间室温被控对象具有时滞 特性,引入 Smith 预估补偿器¹来改善该室温控制 系统的稳定性。

下一步,将 MSOA.m 中的 D=3 改为 D=8,其 余参数值保持不变,保存和命名为新程序 MSOA_ FOPID-Parammeters.m 。基于 MALAB/Simlink 工 具,整定的控制器的 8 个参数最佳值及其相应的室 温过渡过程 $T_n(t)$,分别如表 3 和图 7 所示。

参数	$T_{n,0}$	$T_{n,set} \pm \Delta T$	<i>K</i> *	<i>K</i> *	K*	2*	//- *	<i>K</i> *	<i>K</i> *	1.*
运行工况	/ °C	/ °C	К р,М	м _{I,M}	м _{D,M}	λM	$\mu_{ m M}$	К р,А	м _{I,A}	<i>λ</i> _A
冬季	10	22 ± 1	2.76	0.01	22.37	0.51	0.05	1.05	0.58	0.55
夏季	35	25 ± 1	3.52	0.01	12.25	1.05	0.11	0.95	0.01	0.52

表 3 IT-FOPIDC 和 ISAV-FOPIC 的 8 个参数最佳值 Table 3 The ontimal values of eight parameters for IT-FOPIDC and ISAV-FOPIC

Fig.7 Diagram of indoor temperature variations under air-conditioning operating conditions in winter and summer

基于图 7, 计算出的室温过渡过程指标如表 4 所示。

表 4 冬、夏季空调工况下的室温控制指标

Table 4Control indicators for indoor temperature underair-conditioning operating conditions in winter and summer

工況性能指标	冬季	夏季
最大偏差/℃	3.83	3.24
最大超调量/%	17.41	12.96
峰值时间 tp/s	52	48
调节时间 t_s/s	78	75
上升时间 t_r/s	45	42
稳态误差/℃	0.22	0.19
衰减比 (n:1)	4.71:1	3.42:1

分析表 4 可知,该 VAV-Box 室温 PI^λD^μ一室 内送风量 PI^λ 串级控制系统具有较短的调节时间、 很小的稳态误差、较小的超调量和合理的衰减比等, 是可以满足空调工艺对室温品质的相关要求的。

5 结论

针对风机型VAV-Box作用下的室温被控对象, 本文提出了室温 PI^AD^µ一室内送风量 PI^A 串级控制 策略,串级调节送入室内的冷、热风量。同时充分 发挥分数阶 PID 控制器整定参数多,可调范围广的 优势,既满足 $T_n=T_{n,set}\pm\Delta T$ 的空调工艺要求,又有 效地克服冷、热风量变化所导致的室内压力 P_n 波 动的影响。对于主、副调节器参数整定的关键问题, 受启于模糊数学中的 S 型隶属度函数,构建非线性 变化新变量 v,替换 SSOA 中的惯性权值 ω ,设计 出 MSOA,可对两个控制器的 8 个参数进行连续整 定,获取对应的最佳值。基于 MALAB 工具,分别 对该室温 PI^AD^µ-室内送风量 PI^A 串级调节系统进 行组态和 MSOA 编程,且同步运行数值模拟。结 果表明:基于 MSOA 的控制器参数整定和该分数 阶 PID 串级调节系统在理论上是可行的,且进一步 提升了室温控制性能指标,如很小的稳态误差、较 小的超调量和较短的调节时间等。这些对于风机型 VAV-Box 的实际控制应用,具有一定的参考作用。

参考文献:

- [1] 李鹏波,李绍勇,吴宗礼,等.变风量末端装置的基于
 IPSA-DE 算法 PI^AD^µ-送风量 PI 串级控制器的数值研 究[J].制冷与空调,2018,32(4):428-434.
- [2] 高磊.室温 PID 控制实验系统的研究[D].天津:天津大学,2008:1-60.
- [3] 吴正松.VAV BOX 控制算法与仿真[D].广州:华南理工 大学,2012:21-31.
- [4] Shui Y, Ronald P. Multiple zone ventilation and temperature control of a single-duct VAV system using model predictive strategy[J]. Energy and Building, 2006,38(10):1248-1261.
- [5] 魏先宏,李绍勇,吴宗礼,等.风机盘管室温 PIλDμ控制器 基于 IACOA 的参数整定及其控制性能分析[J].制冷与 空调,2019,(5):570-576.
- [6] 李献,骆志伟.精通 MATLAB/Simulink 系统仿真[M].北 京:清华出版社,2017:417-418.
- [7] 邓勇.中央空调系统的模糊神经网络 PID 控制器研究[D].衡阳:南华大学,2012:8-11,32-34.
- [8] 曹建秋,徐凯.模糊 PID 控制在变风量空调系统中的应 用[J].计算机仿真,2011,28(5):197-200.
- [9] 郭金钱.变风量空调系统的建模与控制仿真[D].青岛:青岛理工大学,2014:54-60.
- [10] Yogendar A. AGC of restructured multi-area multi-source hydrothermal power systems incorporating energy storage units via optimal fractional-order fuzzy PID controller[J]. Neural Computer & Applications, 2019,31(3):851-872.
- [11] Shafik M, Chen B, Hongkun R, et al. Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework[J]. IEEE Access, 2019,10(7):36934-36947.
- [12] 郭大庆,李晓,赵永进.基于改进 PSO 算法的 PID 参数自 整定[J].计算机工程,2007,33(18):202-204.