文章编号: 1671-6612 (2022) 01-127-06

热泵烘干机双蒸发器联合运行仿真

单惠敏 李孔清 李 荀

(湖南科技大学土木工程学院 湘潭 411100)

【摘 要】 为解决热泵烘干系统在不同工况下制冷剂流量不稳定,在工程上调节困难,在仿真上结果容易不 收敛的问题,提出了一种新型并联双蒸发器联合运行仿真模型。针对这一模型,采用新的模拟方 式,由入口参数求出口参数,先后建立并联双蒸发器的数学模型和仿真程序。重点研究了热泵烘 干系统中并联双蒸发器模拟平衡计算的程序编译和流量修正算法。研究结果表明,并联双蒸发器 联合运行仿真模型可以求解两个不同工况下的蒸发器中制冷剂的体积流量的分配及压降变化。研 究结果在工程实践上对并联蒸发器的热泵烘干系统的设计给予一定的指导作用。

【关键词】 热泵烘干; 仿真程序; 流量修正; 并联双蒸发器

中图分类号 TU83 文献标识码 A

Joint Operation Simulation of Double Evaporator for Heat Pump Dryer

Shan Huimin Li Kongqing Li Xun

(College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411100)

(Abstract) In order to solve the unstable refrigerant flow in the heat pump drying system under different working conditions. And it is difficult to adjust it in engineering and the result is not stable in simulation. A new simulation model of parallel double evaporator joint operation is presented. For this model, the entry parameter is used to solve the exit parameter. The mathematical model and simulation program of single evaporator and parallel double evaporator are established successively. In heat pump drying system, the flow correction algorithm of parallel double evaporator simulation and the programming of evaporator are the key research contents. The results show that the simulation model of parallel double evaporator can solve the volume flow rate and pressure drop of refrigerant in evaporator under different working conditions. The research results can provide some guidance for the design of heat pump drying system with parallel evaporator in engineering practice.

(Keywords) heat pump drying; Simulation program; Flow correction; Parallel double evaporator

作者简介:单惠敏(1994-),女,硕士研究生,研究方向为烘干机开发,E-mail: shanhuiminhi@163.com 通讯作者:李孔清(1974-),男,副教授,主要研究方向为计算流体动力学应用,E-mail: likongqing@qq.com 收稿日期: 2021-05-11

0 引言

闭式并联双蒸发器烘干机的蒸发器由于并联 布置,可使其运行调节模式可多样化,能较好地适 应不同物料的烘干需求,但在实践过程中由于运行 工况的时变性,系统流态容易不稳定,需对其进行 多次调节并测试,耗时耗力,制约了该项技术的推 广。

现阶段有关于蒸发器的仿真研究^[1-8]大多采用 分区模型与分布参数模型相结合的方法,但均采用 将蒸发器出口参数作为已知条件推出入口参数的 方法。这需要对出口焓值进行假设,若假设值出现 偏差,则仿真程序很难收敛。

本文采用分区分布参数模型方法,将蒸发器划 分为若干微元段,以蒸发器微元段的入口参数作为 已知条件,通过计算得出微元段的出口参数,经循 环最终得到蒸发器的出口参数。先后开发单蒸发器 和并联双蒸发器的仿真模型,并将其开发成软件。 经多次模拟实验,证明该仿真程序具有很好的收敛 性。本文蒸发器仿真程序中,制冷剂 R134a 的物性参数均调用制冷剂物性计算软件 REFPROP。

1 单蒸发器仿真

1.1 单蒸发器数学模型

本文将蒸发器简化为两相区与过热区^[9],分别对 两区域建立数学模型,并开发蒸发器仿真程序。在 计算模块中,将蒸发器划分为若干微元,根据蒸发 器内部及外部的传热分别对蒸发器建立数学模型。

将蒸发器入口参数作为已知参数,即第一个微 元的入口参数,由仿真计算得到第一个微元的出口 参数,将第一个微元的出口参数作为第二个微元的 入口参数,以此循环最终得到蒸发器的出口参数。 由于蒸发器入口制冷剂为近液体,初始进入蒸发器 的制冷剂干度取 0.3^[10],当干度为1时结束两相区 模块,进入过热区模块。两区域计算方法主要区别 为两相区需考虑蒸发器制冷剂侧压降。

1.1.1 过热区数学模型

由于过热区段一般距离较短,且过热区压降远 小于两相区压降,对制冷剂温度的变化影响甚微, 因此过热区的压降变化忽略不计。对蒸发器过热区 建立数学模型如下。

蒸发器传热等式:

$$Q_{g} = m_{r} \left(h_{r,out_{g}} - h_{r,in_{g}} \right) = \frac{t_{air} - t_{r,in_{g}}}{R_{1g} + R_{2g}}$$
(1)

式中: Q_g 为过热区微元段制冷量, W; m_r 为制冷剂的质量流量, kg/s; h_{r,out_g} 、 h_{r,in_g} 分别为过 热区微元段制冷剂的出口和入口焓值, J/kg; t_{ar} 为 蒸发器侧空气温度, K; ι_{r,in_g} 为微元段制冷剂入口 温度, K; R_{1g} 为过热区微元段制冷剂与管内壁的传 热热阻, W/K; R_{2g} 为过热区微元段空气与管外传 热面的传热热阻, W/K。

制冷剂与管内壁的传热热阻:

$$R_{\rm l} = \frac{l}{A \cdot h_{in_{\rm r}}} \tag{2}$$

式中: h_{in_g} 为制冷剂与管内壁之间的对流换热 系数 W/(m²·K); A 为蒸发器内微元段的有效换热 面积, m²。

蒸发器内微元段的换热面积:

$$A = \prod d_n l_r \tag{3}$$

式中: *d*_n为蒸发器管内径, m; *l*_r为蒸发器微 元段的长度, m。

制冷剂与管内壁之间的对流换热系数:

$$h_{in_g} = \frac{Nu \cdot \lambda}{d_r} \tag{4}$$

式中: *Nu* 为代表制冷剂的努塞尔数; λ 为制冷 剂的导热系数, W/(m·K)。

1.1.2 两相区数学模型

制冷剂进入蒸发器时首先进入两相区,此时制 冷剂为气液混合态,制冷剂的温度变化较大,压降 不可以忽略不计。两相区较过热区增加了制冷剂侧 的压降模型。且在两相区,蒸发器的换热性能是正 常工况下的 2.8-2.9 倍^[11]。

制冷剂侧压降方程[12]:

$$P_{r,in} - P_{r,out} = \left[\frac{4f_{m,tp}G_r^2}{\rho_n d_n} + \frac{G_r^2}{l_r} \times \left(\frac{1}{\rho_{r2}} - \frac{1}{\rho_{r1}}\right)\right] \times l_r \quad (5)$$

式中: $P_{r,in}$ 、 $P_{r,out}$ 为两相区微元段内制冷剂进口、出口压力, Pa; $f_{m,ip}$ 为两相区微元段内摩擦因子; G_r 为制冷剂质量流速, kg/(m²·s); ρ_{r1} 、 ρ_{r2} 为两相区微元段内制冷剂的入口、出口密度, kg/m³; ρ_{rl} 为两相区微元段内液相制冷剂的密度, kg/m³。 l_r 为蒸发器微元段的长度, m。

1.1.3 制冷剂内换热系数及无量纲数计算

由于制冷剂状态不同,两相区以及过热区中制 冷剂与管内壁之间的对流换热系数的计算方式也 有所不同。

过 热 区 的 对 流 换 热 系 数 计 算 采 用 的 是 Dittus-Boelter 关联式^[13]:

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$
 (6)

其中在本文提出的蒸发器仿真模型中雷诺数 与普朗特数的计算公式如下:

$$Re = \frac{u_r \cdot d_n}{v} \tag{7}$$

$$Pr = \frac{\mu \cdot C_P}{\lambda} \tag{8}$$

式中: u_r 为制冷剂流速,m/s; d_n 为蒸发器管 内径,m/s;v为制冷剂的运动粘度,m²/s; μ 为制 冷剂的动力粘度,kg/(m·s); C_p 为制冷剂的定压比 热容,J/(mol·K); λ 为制冷剂的导热系数,W/m·K。

两相区对流换热系数关联式[14]:

$$Nu = 0.05 \left[Re_{\nu} \left(\frac{\mu_{\nu}}{\mu_{l}} \right) \left(\frac{\rho_{l}}{\rho_{\nu}} \right)^{0.5} + Re_{l} \right]^{0.8} Pr_{l}^{0.33} \quad (9)$$

式中: μ_{ν} 、 μ_{l} 为制冷剂气相、液相状态下的动力粘度,kg/(m·s); ρ_{ν} 、 ρ_{l} 为制冷剂气相、液相状态

(10)

下的密度,kg/m³。

雷诺数与普朗特数的计算公式与上述一致。 两相区内摩擦因子计算公式如下:

$$f_{m,tp} = 0.079 R e^{-0.25} \tag{10}$$

真

1.1.4 空气侧对流传热系数

若求空气与管外传热面之间的传热热阻,首先 需要计算空气与管外传热面之间的对流换热系数。 计算公式如下:

空气与管外传热面之间的传热热阻:

$$R_2 = \frac{1}{A \cdot h_{out}} \tag{11}$$

式中: A 为蒸发器外侧微元段与空气接触的有 效换热面积, m²; hout 为空气与管外传热面之间的 对流换热系数, W/(m²·K)。

蒸发器外侧与空气接触的有效换热面积:

$$A = \Pi d_w l_r \tag{12}$$

式中: dw为蒸发器管外径, m; l,为蒸发器微 元段的长度, m。

空气与管外传热面之间的对流换热系数:

$$h_{out} = \frac{Nu \cdot \lambda}{d_n} \tag{13}$$

式中: λ 为空气导热系数, 取 0.0251W/(m²·K)。

本文选用的蒸发器物理模型为翅片管式蒸发器, 翅片为铝制三角波纹型翅片。根据李妩等人通过实 验拟合的换热关联式[15],努谢尔数 Nu 的计算公式采 用三角波纹形翅片管式蒸发器的计算关联式。

三角波纹形翅片管式蒸发器:

$$Nu = 0.687 Re^{0.518} \left(\frac{s_f}{d_w}\right)^{-0.0935} \left(\frac{n \cdot s_2}{d_w}\right)^{-0.199} \quad (14)$$

上述关联式中雷诺数 Re 计算公式为:

$$Re = \frac{\omega_{\max} d_b}{v} \tag{15}$$

其中,
$$\omega_{max}$$
 为最大迎面风速, 计算公式为:

$$\omega_{\max} = \omega_f \frac{s_1}{\left(s_1 - d_b\right)} \frac{s_f}{s_f - \delta_f} \tag{16}$$

式中: s_f为翅片间距; d_w为蒸发器管外径, m; n 为蒸发器中管排数量; s2 为空气流动方向上的管 间距, m; s₁为迎风面管间距, m; d_b为考虑翅片 厚度后的管外径, m; δ_f 为翅片厚度, m; v 为空气 的运动粘度。

单惠敏,等:热泵烘干机双蒸发器联合运行仿 • 129 •

1.2 系统原理图

图1为烘干系统原理图,两个蒸发器所处工况 不同, 蒸发器 A 置于烘干箱内风机环境中, 蒸发 器 B 置于室外环境中, 取空气干球温度为 27℃, 湿球温度为19℃。单蒸发器运行时蒸发器 B 运行, 蒸发器 A 停止工作,此时为升温模式。双蒸发器 运行时两个蒸发器同时工作, 俩蒸发器处于并联状 态,此时为升温和除湿模式。蒸发器 A 所处环境 的温度始终高于蒸发器 B。

图 1 烘干系统原理图

Fig.1 Schematic diagram of drying system

1.3 单蒸发器仿真

建立蒸发器数学模型后,在Visual Studio C++ 环境下将数学模型讲一步开发单蒸发器过热区与 两相区的仿真程序。区域的算法流程如图2所示。 整个蒸发器的仿真程序算法流程如图3所示。

图 2 两相区和过热区流程图

Fig.2 Flow Chart of Two-phase Zone and Overheat Zone

图 3 蒸发器整体仿真流程图

Fig.3 Flow chart of overall simulation of evaporator

2 双蒸发器联合运行仿真

2.1 并联双蒸发器流量校正算法

当两个蒸发器并联时,总体积流量 G 始终保 持不变。仿真模型的关键在于如何分配两个蒸发器 的制冷剂流量,使得蒸发器 A 和蒸发器 B 的压降 最终始终保持相等。并联双蒸发器仿真程序的算法 核心是蒸发器中制冷剂的流量校正算法。类比于流 体力学中并联管路的计算原则和压强损失与流体 流量的关系。

蒸发器 A 与蒸发器 B 压降与体积流量的关系:

$$\Delta P_A = S_A \cdot G_A^{\ n} \tag{17}$$

$$\Delta P_{B} = S_{B} \cdot G_{B}^{\ n} \tag{18}$$

式中: G_A 、 G_B 为蒸发器 A、蒸发器 B 中制冷 剂流量, m^3/s ; S_A 、 S_B 为蒸发器 A、蒸发器 B 的阻 抗; ΔP_A 、 ΔP_B 为蒸发器 A、蒸发器 B 的压降,Pa。 流量校正算法如下:

(1) 预估蒸发器 A 与蒸发器 B 的流量 G_A^* 和 G_B^* ;

(2) 求解单个蒸发器在预估流量下的压降, $\Delta P_A^* 和 \Delta P_B^*$;形式上仍可写成式(17)和(18)的形式。

(3)假设下一步迭代蒸发器 A 的流量修正值
 为 ΔG,在流量变化不大的情况下,可近似认为 S_A
 和 S_B 和 n 保持不变,同时满足式 (17) 和 (18), 即.

$$\Delta P'_{A} = S_{A} \cdot \left(G^{*}_{A} + \Delta G\right)^{n}$$

$$\Delta P'_{B} = S_{B} \cdot \left(G^{*}_{B} - \Delta G\right)^{n}$$
(19)
(20)

图 4 拟合曲线与仿真结果对比

Fig.4 Compare with fitting curve and simulation data

在水路中 n 的取值范围为 1~2 之间,本文通过 单蒸发器仿真程序,基于多组体积流量 G 和压降 ΔP ,对函数进行拟合。制冷剂压降与流量关系的 拟合线与仿真计算对比结果见图 4。当 n=2.5 时, 拟合相关度 R²=0.99885, 拟合效果好。此时 S=7.64 ×1014。得到蒸发器中制冷剂压降的估算方法,即 $\Delta P = S \cdot G2.5$

2.2 并联双蒸发器仿真程序算法

以单蒸发器数学仿真模型为基础,通过流量校 正算法来保证并联双蒸发器的压降始终保持相等。 利用 Visual Studio C++将并联蒸发器计算模型开 发成仿真程序,其仿真程序算法流程如图5所示。

图 5 并联蒸发器流程图 Fig.5 Flow chart of parallel evaporator

研究结果与验证 3

3.1 研究结果

根据数学模型及仿真算法,将程序开发成软件, 软件界面如图所示,其中图6为蒸发器结构参数输 入模块,可分别输入两个并联蒸发器的结构参数。 图 7 为并联双蒸发器软件计算界面, 输入制冷剂参 数与空气进口参数,点击"开始仿真"按钮,即可 对整个并联双蒸发器程序进行仿真,并输出结果。

蒸发器A				
管内径	0.009	管间距	0.025	
管外径	0.01	翅片间距	0.0016	
管排数	4	翅片厚度	0.0003	
管内径	0.009	管间距	0.025]
· 같 카1순	0.01	翅片间距	0.0016	
管排数	4	翅片厚度	0.0003	
			In cale	

图 7 并联双蒸发器软计算界面

3.2 流量修正算法验证

通过蒸发器制冷剂流量的校正算法验证来判 断双蒸发器联合运行仿真程序的可行性。流量校正 算法进行验证时,两个蒸发器的结构需保持一致。 将两个蒸发器流量设置为不同值,流量校正100次, 通过并联双蒸发器程序对流量重新进行分配,最终 得到的流量分配结果及误差如表1所示。

表1 流量校正前后蒸发器体积流量及压降

 Table 1
 Volume flow and pressure drop of evaporator before and after flow correction

实验	总体积流量	初始体积流量(m ³ /s)		调节后体积流量(m ³ /s)		压降 (Pa)		工政業(0/)
序号	(m^3/s)	蒸发器 A	蒸发器 B	蒸发器 A	蒸发器 B	蒸发器 A	蒸发器 B	压陴左(%)
1	8×10 ⁻⁵	3×10-5	5×10-5	3.9639×10 ⁻⁵	4.0361×10 ⁻⁵	7.6525	7.9945	4.47
2	8×10 ⁻⁵	5×10-5	3×10 ⁻⁵	3.9889×10 ⁻⁵	4.0111×10 ⁻⁵	7.7753	7.6867	1.14
3	8×10-5	6×10-5	2×10-5	3.9788×10-5	4.0212×10-5	7.7478	8.0509	3.91

由上述运行结果发现,并联的两个蒸发器结构 参数以及制冷剂空气参数相同时,无论最初两个蒸 发器的流量取何值,在经过流量分配后,并联的两 个蒸发器流量及压降都趋于一致。证明本文提出的 并联双蒸发器联合运行仿真程序在理论的可行性 与流量修正算法的可靠性。

4 结论

(1)提出一种新的单蒸发器仿真算法,采用 分布参数模型,将蒸发器划分为若干个微元段,成 功实现由蒸发器入口参数得到蒸发器出口参数,克 服了以往蒸发器模拟中假设出口压力为基础算法的缺点。

(2)以单蒸发器仿真算法为基础,根据并联 蒸发器压降始终相等的原则,提出了一种新的流量 校正算法计算并联双蒸发器流量。

(3)在 Visual Studio C++环境下建立并联双 蒸发器联合运行仿真模型且具有很好的收敛性,并 将其开发成软件,经验证,其软件模型具有很好的 可靠性,在工程上有一定的指导意义。

参考文献:

• 133 •

 Judge J, Radermacher R. A heat exchanger model for mixtures and pure refrigerant cycle simulations[J]. Refrig., 1997,20(4):244-255.

真

- [2] 王维. 层叠式蒸发器建模和仿真研究[D]. 南京: 南京农 业大学,2008.
- [3] 王林.小型制冷系统仿真及不可逆性分析[D].长沙:湖 南大学,2002.
- [4] Willatzen M, Pettit N B O L, Ploug S L. A general dynamic simulation model for e-vaporators and condensers in refrigeration. part I:moving-boundary formulation of two-phase flows with heat exchange[J]. International Journal of Refrigeration, 1998,21(5): 398-403.
- [5] Pettit N B O L, Willatzen M, Ploug S L. A general dynamic simulation model for e-vaporators and condensers in refrigeration. part II: simulation and control of an evapora-teor: Modèle general dynamique pour évaporateurs et condenseurs frigorifiques. Partie II: simulation et régulation d'un é[J]. International Journal of Refrigeration, 1998,21(5):404-414.
- [6] 潘权稳, 王如竹. 一种回热回质循环吸附式制冷系统的 仿真[J].化工学报,2016,67(S2):262-268.
- [7] 李海燕.蒸发器的稳态建模与仿真[C].庆祝北京制冷学 会成立三十周年暨第十届学术年会论文集,2010:86-

92.

- [8] 赵丹,丁国良,胡海涛.质量和能量严格守恒的蒸发器动态仿真模型[J].制冷学报,2015,36(1):76-83.
- [9] 郭晓强, 楚广明. 冰蓄冷系统制冰工况下蒸发器的仿真 模拟[J].制冷与空调,2010,24(3):98-100.
- [10] 王林.小型制冷系统仿真及不可逆性分析[D].长沙:湖 南大学,2002.
- [11] 丁国良,张春路,刘浩.结合人工神经网络的翅片管式冷凝器快速仿真模型[J]. 工程热物理学报,2002,23(1): 75-78.
- [12] 倪振伟. 换热器的热力学第二定律分析与评价方法[J]. 工程热物理学报,1985,6(4):311-314.
- [13] Eckels S J. A comparison of R-134a and R-12 in-tube heat transfer coefficients based on existing correlations[J]. ASHRAE Transactions, 1990,96(1):256-265.
- [14] Schlager LM, Pate MB, et al. Performance Predictions of refrigerant-oil mixtures in smooth and internally finned tubes-part 1:literature review[J]. ASHRAE Transactions, 1990,96(1):160-169.
- [15] 李妩,陶文铨,康海军,等.整体式翅片管换热器传热和 阻力性能的试验研究[J]. 机械工程学报,1997,33(1):81-86.