文章编号: 1671-6612 (2022) 01-140-09

不同结构二氧化碳水合物热物性的 分子动力学模拟

李元超 焦丽君 尹晓霞 李 倩 华泽珍 (青岛职业技术学院海尔学院 青岛 266555)

- 【摘 要】 二氧化碳水合物在空调蓄冷、海水淡化、烟气捕集以及置换法开采天然气水合物等领域均有重要 应用,热物性是气体水合物技术发展和应用的基础。以I型二氧化碳水合物、II型二氧化碳水合物、 II型二氧化碳和环戊烷二元水合物为对象,采用平衡分子动力学模拟手段,研究了20MPa、50-200K 条件下二氧化碳水合物的热物性,包括密度、等温压缩系数、声学速度、比热、热导率、热扩散 率和声子平均自由程,分析了影响水合物热导率的声子输运模式,发现环戊烷存在下,II型二氧 化碳水合物的声子输运模式与I型二氧化碳水合物不同。模拟结果将为二氧化碳水合物在不同热 力学添加剂下的应用提供基础数据和理论依据。
- 【关键词】 二氧化碳水合物; 热物性; 导热特性; 分子动力学模拟
- 中图分类号 O551.3 文献标识码 A

Molecular Dynamics Simulation of Thermal Properties of Carbon Dioxide Hydrates with Different Structures

Li Yuanchao Jiao Lijun Yin Xiaoxia Li Qian Hua Zezhen

(Haier College, Qingdao Vocational and Technical College, Qingdao, 266555)

(Abstract) Carbon dioxide hydrate has important applications in cold storage of air-conditioning, seawater desalination, flue gas capture, and replacement of natural gas hydrate exploitation. Thermal properties are the basis for the development and application of gas hydrate technology. The thermal properties of carbon dioxide hydrate under the conditions of 20 MPa, 50-200 K are studied for structure I carbon dioxide hydrate, structure II carbon dioxide hydrate and structure II carbon dioxide-cyclopentane binary hydrate using equilibrium molecular dynamics simulation methods. They are density, isothermal compressibility, acoustic velocity, specific heat, thermal conductivity, thermal diffusivity and mean free path of phonons. The phonon transport mode that affects the thermal conductivity of hydrate is analyzed, and it is found that in the presence of cyclopentane, the phonon transport mode of structure II carbon dioxide hydrate is different from that of structure I. The simulation results will provide basic data and theoretical basis for the application of carbon dioxide hydrate under different thermodynamic additives.

[Keywords] CO₂ hydrate; Thermal properties; Thermal conductivity; Molecular dynamic simulations

通讯作者: 焦丽君 (1989-), 女, 硕士, 助教, E-mail: 522927618@qq.com

0 引言

和二氧化碳等。根据客体分子大小,通常分为结构 I 型、II 型和 H 型水合物。自然界中如天然气水合物、 二氧化碳水合物一般是 I 型水合物,客体分子尺寸 为 4-5.5 Å;人工合成的水合物如环戊烷水合物、 四氢呋喃水合物通常是 II 型水合物,客体分子尺寸

作者简介: 李元超(1979-), 男, 硕士, 教授, E-mail: 412475262@qq.com

收稿日期: 2021-07-02

气体水合物是在一定的温度和压力条件下形 成、由水分子和客体分子组成的包络状固体化合物, 水分子之间由氢键相连形成笼形结构,客体分子位 于晶穴中心。常见的客体分子有甲烷、乙烷、丙烷

第36卷第1期

• 141 •

为 6-7 Å;构成 H 型水合物的大客体分子尺寸为 8-9 Å,H 型水合物相对较少^[1]。气体水合物的结 构不同,对应的热力学性质,如相平衡特性有较大 的区别,相比于二氧化碳水合物的相平衡条件 (276.45-282.05K,1.81-3.83MPa),二氧化碳和环 戊烷二元水合物的相平衡条件更加温和 (281.55-290.25K,0.15-1.92MPa)^[2],具体表现 在相平衡温度更高、压力更低,能够克服二氧化碳 水合物合成压力高、过冷度大的问题,使基于二氧 化碳水合物的碳捕集、海水淡化以及空调蓄冷的低 成本应用成为可能^[3-7]。因此,研究不同结构水合 物的热物性对于水合物合成和分解的应用具有重 要意义。

拟

气体水合物的热物性测量有实验和模拟两种 方法,目前研究较多的是甲烷水合物,其次是乙烷、 丙烷和四氢呋喃水合物,二氧化碳水合物及二元水 合物的热物性报道较少^[8-13]。实验室人工合成的水 合物通常具有晶格缺陷和空穴,Lee 等^[14]用X射线 衍射方法测试了二氧化碳和环戊烷(CP)二元水 合物的晶体结构和晶穴占有率,发现结构为II型水 合物,由于二氧化碳的存在,晶格常数相比于环戊 烷水合物略有增加,其中环戊烷完全占据了大晶穴, 二氧化碳占据了 62%的小晶穴。实验测量热物性对 于实验设备的要求比较高,而且很难精确的合成不 同结构和不同晶穴占有率的水合物,因此,本文采 用分子动力学模拟的方法研究不同结构和晶穴占 有率下气体水合物的热物性。

1 模型与方法

1.1 分子模型

利用 Material Studio 建立不同结构的气体水 合物,结构类型和大小晶穴占有率如表 1 所示,初

始构型如图1所示,分别为I型CO2水合物和II 型 CO₂-CP 二元水合物,其中二氧化碳占据小晶穴, 环戊烷占据大晶穴,图1 (b)是晶穴占有率为100% 的情况。I型水合物结构为2X·6Y·46H₂O, II型 水合物结构为 8X · 16Y · 136H₂O, 其中 X 表示大晶 穴,Y表示小晶穴[1]。为了保证体系原子数大致相 同,I型水合物采用 3×3×4 超晶胞结构,II 型水合 物采用 2×2×3 超晶胞结构,水分子数分别为 1565 和 1632, 晶穴数均为 288。按照 Takeuchi 等^[15]提 出的 I 型和 II 型水合物的晶胞常数及绝对坐标,分 别放置氧原子和氢原子,并将客体分子放在晶穴中 心。水分子、二氧化碳分子和环戊烷分子分别选择 SPC/E 模型、EMP2 模型和全原子力场模型,势能 。分子间相互作用力包括 函数见表 2[16-18] Lennard-Jones 范德华力和库仑力, 见公式(1), 不同原子间的 Lennard-Jones 势能作用遵从 Lorentz-Berthelot 作用规则, 见公式 (2) 和 §)^[19]。

$$U = \sum_{i < j} 4\mathcal{E}_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_i q_j}{4\pi \mathcal{E}_0 r_{ij}} \quad (1)$$

$$\sigma_{ij} = \frac{1}{2} (\sigma_{ii} + \sigma_{jj}) \tag{2}$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_{ii}\varepsilon_{jj}} \tag{3}$$

	Tal	ole 1	Simulation	n system	
体系	安休八乙	结	大晶穴占	小晶穴占	综合占有
编号	各仲万丁	构	有率(%)	有率(%)	率 (%)
1	CO ₂	Ι	100	100	100
2	CO_2	II	0	100	66.7
3	CO ₂ +CP	II	50	50	50
4	CO ₂ +CP	II	100	100	100

图 1 初始构型(蓝线-氢键,棒状-共价键,球形-原子,氧原子-红色,氢原子-白色,碳原子-黄色)

Fig.1 Configuration of initial hydrate (The dotted blue line represents hydrogen bonding, the ball represents atom, the

2022

stick represents covalent bond, C-yellow, O-red, H-white)

表 2 势函数参数 Table 2 Potential energy parameters

				s, parameters	
分子	模型	原子	电荷	$\epsilon ~(kcal/mol)$	$\sigma~({\rm \AA})$
но	SDC/F	0	-0.8476	0.1553	3.166
1120	SI C/E	Н	0.4328	0.0000	0.000
<u> </u>	EDMO	С	0.6512	0.0559	2.757
CO_2	EPIVIZ	0	-0.3256	0.1600	3.033
C II	ODLC	С	-0.2000	0.0660	3.500
C_5H_{10}	OPLS	Н	0.1000	0.0300	2.500

1.2 模拟方法

采用开源软件LAMMPS进行分子动力学模拟。 三个方向均采用周期性边界条件,时间步长为1fs, 分子间相互作用力的截断半径为 12Å,采用 PPPM (particle-particle particle-mesh)方法计算长程静电 力, 精度为 10⁻⁶, 采用 velocity-verlet 积分算法求解 运动方程,采用 shake 算法固定水分子的键长和键 角。首先进行能量最小化,然后将体系置于 NVT 系综下运行 500ps, 采用 Noose-Hoover 热浴, 阻尼 系数设为0.1ps, 使体系达到恒定温度并保持平衡。 接着将体系置于 NPT 系综下运行 500ps,采用 Noose-Hoover 热浴和压浴,温度阻尼系数设为 0.1ps,压力阻尼系数设为1ps,使体系达到设定温 度和压力。最后,将体系置于 NVE 系综下运行 1ns。模拟结束后,采用平衡分子动力学模拟 (EMD)方法,运用 Green-Kubo 公式,编程计算 热导率,见公式(4)^[20]。

$$k = \frac{1}{3k_B V T^2} \int_0^\infty \langle J(t) \cdot J(0) \rangle dt \tag{4}$$

其中, k_B 为波尔兹曼常数,J/K;V为模拟区域的体积, m^3 ;T为模拟区域的温度,K; $< J(t) \cdot J(0) >$ 为热流自相关函数(HCACF)。

声子平均自由程是影响物体内部热输运的重要参数^[21],李佳等^[22]通过对甲烷水合物的分子动 力学模拟发现,分解过程的固-液界面厚度与甲烷 水合物内部的声子平均自由程十分接近,说明水合 物的导热特性对水合物分解过程影响较大。根据分 子动力学理论,声子平均自由程的计算方法如公式 (5)所示^[23]。

$$k = \frac{1}{3}\rho c_{\nu} v l = \frac{1}{3} c_{\nu} l \sqrt{\frac{\rho}{\beta_T}}$$
(5)

其中, k 为热导率, W·m⁻¹·K⁻¹; ρ 为密度, kg/m³; β_T 为等温压缩系数, m·s²/kg; v 为声学速 度; $\vartheta = \frac{1}{\sqrt{\rho\beta_T}}$,

kg/s: *c*_v为等容比热,kJ/kg·K。以上参数均可以通 过分子动力学模拟求解,密度取 NPT 系综下的统 计平均值,等温压缩系数计算方法如公式(6)所 示,在 0.5ns 的 NPT 系综下计算系统体积的波动。

$$\beta_T = \frac{\left(\left\langle V^2 \right\rangle - \left\langle V \right\rangle^2\right)}{k_B T \left\langle V \right\rangle} \tag{6}$$

其中,*V*表示体系的体积,m³,*T*为体系温度, K, k_B 为波尔兹曼常数,大小为1.38×10⁻²³J/K。此 外,等容比热 c_v 根据NVT系综下能量波动计算, 见公式(7),其中E为体系的势能,J/mol。

$$c_{v} = \frac{\left(\left\langle E^{2} \right\rangle - \left\langle E \right\rangle^{2}\right)}{k_{B}T^{2}} \tag{7}$$

为了验证模拟方法和计算方法的正确性,测试 计算了 I 型 CO₂ 水合物的热物性,在相似的热力学 条件下,模拟值与文献值相接近,具体对比将在结 果与讨论部分展开。

2 结果与讨论

2.1 I型CO2水合物导热特性

200K、20MPa条件下,CO2水合物在模拟初 始时刻和结束时刻的径向分布函数如图2所示,可 以看出,水分子和二氧化碳分子之间均存在明显的 结构分布,水中氧原子之间的径向分布函数峰值依 次出现在 2.73Å, 4.5Å 和 6.46Å, 分别代表了水合 物晶格结构五元环边长和多面体笼形结构中水分 子与对角水分子之间的距离,二氧化碳分子中碳原 子之间的径向分布函数峰值出现在 6.76Å, 代表了 两个晶穴中心的距离,峰值与文献报道一致[24],证 明了水合物结构的正确性。而且在模拟前后,水合 物的结构峰值并未发生变化,只是略有下降,这是 由于在分子间力的作用下,水分子和二氧化碳分子 在初始位置上振动和旋转导致的,水合物结构并未 发生变化,证明了二氧化碳水合物在 200K、20MPa 条件下处于热力学稳定区域,可以使用平衡分子动 力学模拟方法(EMD)获得热物性。图 3 是 I 型 CO2 水合物在 200K、20MPa 条件下的热流自相关函数 (HCACF)和热导率随关联时间变化曲线,可以 看出,热流在 0.6ps 内快速收敛,热导率也在 1ps 内趋于稳定,平均热导率为 0.8498W·m⁻¹·K⁻¹。姚 贵策^[25]通过实验测得的二氧化碳水合物的热导率 在 0.45-0.53W·m⁻¹·K⁻¹(温度范围 257.15K-273.15K),Jiang 等^[26]通过分子动力学模拟测得的 二氧化碳水合物的热导率在 0.75-0.95W·m⁻¹·K⁻¹ (温度范围 0-250K),热导率与实验和模拟结果均 处于同一数量级,证明了模拟方法的可靠性。

拟

图 3 200K, 20MPa 条件下(a) 热流自相关函数(b) 热导 率随关联时间变化

Fig.3 (a) HCACF and (b) thermal conductivity varies versus time under 200K, 20MPa

图 4 是热流自相关函数能谱,通过对热流自相 关函数作傅里叶变换得到,能够反映出声子能量的 消散。可以看出不同频率的声子对水合物内部热输 运的影响不同,高频成分(>15THz)大于低频成 分,说明在水合物导热过程中高频声子(15-25THz) 起到主导作用,而低频声子(<12THz)幅值相对 较小,表明在低频区域主客体分子之间充分耦合, 而高频区域的声子更容易消散,即声学声子的导热 对水合物导热起主导作用。I型二氧化碳水合物的 声子作用模式和甲烷水合物相类似^[23]。

Fig.4 Power spectra of HCACF in CO₂ hydrate

2.2 II型CO₂-CP二元水合物导热特性及对比分析 在 200K、20MPa条件下,计算 II型CO₂-CP 二元水合物在模拟前后的径向分布函数,结果表明, 模型正确而且水合物处于热力学稳定区。热流自相 关函数和热导率分别在 1ps 和 1.5ps 结束收敛,说 明模拟方法对于 II型CO₂-CP二元水合物同样具有 适用性。由于篇幅限制,此处不再展示,主要分析 热导率以及影响水合物热导率的声子输运模式。
图 5 是不同条件不同结构水合物的热导率,可以看 出,对于 I型水合物,热导率的模拟值均大于实验 值^[25-27],热导率随温度变化不存在显著的正相关或 负相关趋势,对于不同的水合物,表现为在一定的 温度范围内热导率随温度升高,而在另一范围热导 率随温度降低。

为了分析不同结构二氧化碳水合物的导热特性,图6绘制了20MPa、200K条件下 II 型 CO₂水合物(a)和 II 型 CO₂-CP 水合物(晶穴占有率为50%(b)和100%(c))的热流自相关函数能谱。可以看出,影响 II 型水合物的声子导热模式除了高频声子外,低频声子区域(<12THz)也存在明显的峰值,而且当二氧化碳仅占据小晶穴时,低频声子区

域的能谱峰值较低,随着环戊烷分子占据大晶穴, 能谱峰值提高,当二氧化碳和环戊烷完全占据大小 晶穴时(晶穴占有率100%),低频声子区域的能谱 峰值最高,几乎接近于高频声子区域的能谱峰值。 说明对于 II 型水合物,随着大晶穴的晶穴占有率的 增加,低频声子导热对水合物导热起到的作用也变 得显著,高频声子和低频声子导热均对水合物导热 起到重要作用。

(a) II 型 CO₂ 水合物(小晶穴占有率 100%)

(b) Ⅱ型CO₂+CP二元水合物(大小晶穴占有率均为 50%)

图 6 二元水合物热流自相关函数能谱

Fig.6 Power spectra of HCACF in CO₂-CP hydrate

2.3 不同结构二氧化碳水合物的热物性

针对表 1 列出的 4 个不同体系,在 50-200K 温度范围内,计算了不同结构二氧化碳水合物的热

第36卷第1期

拟

李元超,等:不同结构二氧化碳水合物热物性的分子动力学模

• 145 •

物性,包括密度、等温压缩系数、声学速度、比热、 热导率、热扩散率和声子平均自由程。表4是不同 结构二氧化碳水合物的密度,可以看出,当气体水 合物结构一定时,温度越低,密度越大,这是由于 温度越低,分子的势能越低,分子之间的相互作用 力越大,水合物越稳定,此时分子热运动缓慢,客 体分子位于晶穴中心, 主客体分子间吸引力较大, 因此体积较小,密度较大。相同温度下,不同结构 气体水合物的密度排序为: I型 CO2 水合物, II 型 CO₂+CP 二元水合物(综合晶穴占有率 100%), II 型 CO₂ 水合物(综合晶穴占有率 66.7%)和 II 型 CO₂+CP 二元水合物(综合晶穴占有率 50%),可 见晶穴占有率越高,客体分子对密度的贡献越大, 密度越大。Chialvo 等[28]使用水分子 SPC/E 模型计 算的 I 型 CO2 水合物在 270K、5MPa 下的密度为 1.181g/cm3, 与 200K、20MPa 条件下的模拟结果 (1.189g/cm³)相接近,而且满足温度越低,密度 越大的规律。不同结构不同温度二氧化碳水合物的 等温压缩系数如表5所示,可以看出,相同结构的 水合物,温度越低,等温压缩系数越低。Ning 等^[29] 在 20MPa、271.15K 条件下模拟了 I 型 CO2 水合物 的等温压缩系数,约为1.1×10-4MPa-1,与表5中 20MPa 、200K 条件下的模拟结果 0.8753 × 10-4MPa-1在同一个数量级,而且满足温度越高,等 温压缩系数越大的规律。

声学速度是影响固体热输运的重要参数,仅与 密度和等温压缩系数有关,计算结果如表6所示。 Jiang 等^[26]在 0.1MPa、150K 条件下通过分子动力学 模拟得到的二氧化碳水合物的声学速度是 3300m/s, 与表 6 所列 20MPa 、150K 条件下的声学速度 3321.78m/s 相差不大。可以看出,温度越低,声学 速度越高,而且I型CO2水合物(晶穴占有率 100%)的声学速度大于 II 型 CO₂+CP 二元水合物 (晶穴占有率 100%),这是由于 II 型水合物主客体 分子之间耦合增强的缘故,当晶穴占有率降低时, 主客体之间的耦合作用减弱(见图6),声学速度增 大[30]。定容比热的计算结果如表7所示,可以看出, 尽管水合物结构不同,但是随温度的变化趋势是一 致的,温度越高,比容越大,这与 Andersson 等^[31] 汇报的Ⅱ型四氢呋喃的比容以及黄文件等[32]汇报的 天然气水合物的比容随温度的变化规律一致,而且 相比于Ⅰ型水合物,Ⅱ型水合物的比热较小,而且 随着晶穴占有率的下降而降低。因此,通过实验室 合成的水合物或自然界中的水合物由于晶格结构缺 陷,可能会存在比热低于理论值的情况。模拟得到 的热扩散率如表 8 所示,对于 I 型 CO₂ 水合物,大 小介于 2.83~6.40×10-7m²·s-1 范围内, 与姚贵策[25] 测量的实验值($4 \sim 6 \times 10^{-7} \text{m}^2 \cdot \text{s}^{-1}$)相差不大,而且 可以看出,Ⅱ型水合物的热扩散率相对较大,尤其 是晶格有缺陷的情况,热扩散率更大。声子平均自 由程是由上述热物性参数根据公式求解得到的,计 算结果如表9所示,可以看出,Ⅱ型二氧化碳水合 物的声子平均自由程高于I型二氧化碳水合物,这 可能会影响到二者的分解行为,仍需要进一步研究。

Table 4 Densities of carbon dioxide hydrates with different structures						
模拟条件	体系1	体系 2	体系 3	体系 4		
20MPa 50K	1.2403	1.0884	1.0228	1.2294		
20MPa 100K	1.2242	1.0751	1.0102	1.2074		
20MPa 150K	1.2060	1.0600	0.9949	1.1827		
20MPa 200K	1.1891	1.0435	0.9773	1.1590		
5MPa 270K ^[28]	1.181					
表 5	不同结构二氧化碳水合物	的等温压缩系数(×	10 ⁻⁴ MPa ⁻¹)			
Table 5 Isother	mal compressibility of carb	on dioxide hydrates	with different structu	ires		
模拟条件	体系1	体系 2	体系 3	体系 4		
20MPa 50K	0.5009	0.5456	0.4769	0.5942		
20MPa 100K	0.5853	0.6911	0.8633	0.7365		
20MPa 150K	0.7515	0.7787	0.9760	1.1267		
20MPa 200K	0.8753	1.3102	1.4007	1.2011		
20MPa 271.15K ^[29]	1.1000					

表 4 不同结构二氧化碳水合物的密度(g/cm³)

	制名	铃与空调 ∓		2022
	表 6 不同结构二氧化碳	水合物的声学速度(m/s)	
Table 6	Acoustic velocity of carbon di	oxide hydrates with	different structures	
模拟条件	体系1	体系 2	体系3	体系4
20MPa 50K	4011.92	4103.43	4527.74	3699.88
20MPa 100K	3735.88	3668.54	3386.35	3353.35
20MPa 150K	3321.78	3480.81	3209.12	2739.37
20MPa 200K	3099.71	2704.50	2702.83	2680.21
0.1MPa 30K ^[26]	3500±100			
0.1MPa 150K ^[26]	3300±100			
0.1MPa 260K ^[26]	3100±100			
	表 7 不同结构二氧化碳水	<合物的比热容(kJ/	kg·K)	
Table 7 Sp	ecific heat capacity of carbon	dioxide hydrates wi	th different structure	S
模拟条件	体系1	体系 2	体系 3	体系 4
20MPa 50K	1.3972	1.0759	1.0954	1.1657
20MPa 100K	1.8168	1.4456	1.2525	1.5294
20MPa 150K	2.0033	1.5077	1.7861	1.8739
20MPa 200K	2.2441	1.6050	1.8995	1.9064
20MPa 153K ^[29]	≈2.36			
20MPa 271.15K ^[29]	≈2.56			
 君	8 不同结构二氧化碳水合	物的热扩散率(×1	$0^{-7} \text{ m}^2 \cdot \text{s}^{-1}$	
Table 8 T	hermal diffusivity of carbon	dioxide hydrate with	different structures	
模拟条件	体系1	体系2	体系3	体系 4
20MPa 50K	6.40	7.34	7.73	4.56
20MPa 100K	3.52	4.08	7.21	4.41
20MPa 150K	2.83	4.30	3.22	3.14
20MPa 200K	3.16	4.38	3.09	3.41
	表 9 不同结构二氧化碳水合		程 (Å)	
Table 9 Pho	non mean free path of carbo	n dioxide hvdrates w	ith different structur	es
模拟条件	体系1	体系?	体系3	体系 4
20MPa 50K	4 78	5.36	5.12	3 69
20MPa 100K	2.83	3 33	6 38	3 94
20MPa 150K	2.05	3 71	3.01	3.74
201011 a 1301X	2.50	J./1 1 02	2 42	2.97
2	Table 6 模拟条件 20MPa 50K 20MPa 100K 20MPa 100K 20MPa 200K 0.1MPa 30K ^[26] 0.1MPa 150K ^[26] 0.1MPa 260K ^[26] 0.1MPa 150K 20MPa 100K 20MPa 150K 20MPa 153K ^[29] 0MPa 271.15K ^[29] ØHa 50K 20MPa 150K 20MPa 50K 20MPa 100K 20MPa 50K 20MPa 50K 20MPa 100K 20MPa 50K 20MPa 150K 20MPa 150K 20MPa 150K 20MPa 150K 20MPa 200K	本6 不同结构二氧化碳: Table 6 Acoustic velocity of carbon di 模拟条件 体系 1 20MPa 50K 4011.92 20MPa 100K 3735.88 20MPa 150K 3321.78 20MPa 200K 3099.71 0.1MPa 200K 3500±100 0.1MPa 150K ^[26] 3300±100 0.1MPa 260K ^[26] 3100±100 Table 7 Specific heat capacity of carbon 模拟条件 体系 1 20MPa 50K 1.3972 20MPa 100K 1.8168 20MPa 100K 2.2441 20MPa 150K ^[29] ≈2.36 0MPa 153K ^[29] ≈2.36 0MPa 271.15K ^[29] ≈2.36 0MPa 271.15K ^[29] ≈2.36 0MPa 150K 2.441 20MPa 50K 6.40 20MPa 100K 3.52 20MPa 100K 3.52 20MPa 100K 3.52 20MPa 150K 2.83 20MPa 200K 3.16 表 9 不同结构二氧化碳水 模拟条件 体系 1 20MPa 50K 2.83 20MPa 50K 2.83 </td <td>年 表 6 不同结构二氧化碳水合物的声学速度(横拟条件 体系 1 体系 2 20MPa 50K 4011.92 4103.43 20MPa 100K 3735.88 3668.54 20MPa 100K 3735.88 3668.54 20MPa 100K 3735.88 3668.54 20MPa 200K 3099.71 2704.50 0.1MPa 30K^[26] 3500±100 0 0.1MPa 30K^[26] 3300±100 0 0.1MPa 260K^[26] 3100±100 7 天 7 不同结构二氧化碳水合物的比热容 (kJ/l) Table 7 Specific heat capacity of carbon dioxide hydrates with 模拟条件 体系 1 体系 2 20MPa 50K 1.3972 1.0759 20MPa 50K 1.3972 1.0759 20MPa 100K 1.8168 1.4456 20MPa 100K 2.2441 1.6050 20MPa 150K 2.0033 1.5077 20MPa 200K 2.2441 1.6050 20MPa 150K 2.040 7.34 20MPa 150K 6.40 7.34 20MPa 50K<!--</td--><td>年 表 6 不同结构二氧化碳水合物的声学速度(m/s) Table 6 Acoustic velocity of carbon dioxide hydrates with different structures 模拟条件 体系 1 体系 2 体系 3 20MPa 50K 4011.92 4103.43 4527.74 20MPa 100K 3735.88 3668.54 3386.35 20MPa 100K 3321.78 3480.81 3209.12 20MPa 200K 3099.71 2704.50 2702.83 0.1MPa 30K¹²⁶¹ 3500±100 0 1.042 0.1MPa 30K¹²⁶¹ 3100±100 1.041 452.55 0.1MPa 30K¹²⁶¹ 3100±100 453.77 Table 7 Specific heat capacity of carbon dioxide hydrates with different structures 模拟条件 体系 1 455.25 20MPa 100K 1.8168 1.4456 1.2525 20MPa 100K 2.2441 1.6050 1.8995 20MPa 200K 2.2441 1.6050 1.8995 20MPa 201.5K¹²⁹ ~2.56 -2.56 20MPa 100K 3.52 4.08 7.21 <</td></td>	年 表 6 不同结构二氧化碳水合物的声学速度(横拟条件 体系 1 体系 2 20MPa 50K 4011.92 4103.43 20MPa 100K 3735.88 3668.54 20MPa 100K 3735.88 3668.54 20MPa 100K 3735.88 3668.54 20MPa 200K 3099.71 2704.50 0.1MPa 30K ^[26] 3500±100 0 0.1MPa 30K ^[26] 3300±100 0 0.1MPa 260K ^[26] 3100±100 7 天 7 不同结构二氧化碳水合物的比热容 (kJ/l) Table 7 Specific heat capacity of carbon dioxide hydrates with 模拟条件 体系 1 体系 2 20MPa 50K 1.3972 1.0759 20MPa 50K 1.3972 1.0759 20MPa 100K 1.8168 1.4456 20MPa 100K 2.2441 1.6050 20MPa 150K 2.0033 1.5077 20MPa 200K 2.2441 1.6050 20MPa 150K 2.040 7.34 20MPa 150K 6.40 7.34 20MPa 50K </td <td>年 表 6 不同结构二氧化碳水合物的声学速度(m/s) Table 6 Acoustic velocity of carbon dioxide hydrates with different structures 模拟条件 体系 1 体系 2 体系 3 20MPa 50K 4011.92 4103.43 4527.74 20MPa 100K 3735.88 3668.54 3386.35 20MPa 100K 3321.78 3480.81 3209.12 20MPa 200K 3099.71 2704.50 2702.83 0.1MPa 30K¹²⁶¹ 3500±100 0 1.042 0.1MPa 30K¹²⁶¹ 3100±100 1.041 452.55 0.1MPa 30K¹²⁶¹ 3100±100 453.77 Table 7 Specific heat capacity of carbon dioxide hydrates with different structures 模拟条件 体系 1 455.25 20MPa 100K 1.8168 1.4456 1.2525 20MPa 100K 2.2441 1.6050 1.8995 20MPa 200K 2.2441 1.6050 1.8995 20MPa 201.5K¹²⁹ ~2.56 -2.56 20MPa 100K 3.52 4.08 7.21 <</td>	年 表 6 不同结构二氧化碳水合物的声学速度(m/s) Table 6 Acoustic velocity of carbon dioxide hydrates with different structures 模拟条件 体系 1 体系 2 体系 3 20MPa 50K 4011.92 4103.43 4527.74 20MPa 100K 3735.88 3668.54 3386.35 20MPa 100K 3321.78 3480.81 3209.12 20MPa 200K 3099.71 2704.50 2702.83 0.1MPa 30K ¹²⁶¹ 3500±100 0 1.042 0.1MPa 30K ¹²⁶¹ 3100±100 1.041 452.55 0.1MPa 30K ¹²⁶¹ 3100±100 453.77 Table 7 Specific heat capacity of carbon dioxide hydrates with different structures 模拟条件 体系 1 455.25 20MPa 100K 1.8168 1.4456 1.2525 20MPa 100K 2.2441 1.6050 1.8995 20MPa 200K 2.2441 1.6050 1.8995 20MPa 201.5K ¹²⁹ ~2.56 -2.56 20MPa 100K 3.52 4.08 7.21 <

3 结论与展望

采用平衡分子动力学模拟手段,在 20MPa、 50-200K条件下,测试了I型CO₂水合物、II型CO₂ 水合物(小晶穴占有率 100%)、II型CO₂+CP二元 水合物(大小晶穴占有率均为 50%)和 II型 CO₂+CP二元水合物(大小晶穴占有率均为 100%) 的热物性,包括密度、等温压缩系数、声学速度、 比热、热导率、热扩散率和声子平均自由程。得到 以下结论: (1)在环戊烷占据大晶穴条件下, II 型二氧化碳水合物的声子输运模式与I型二氧化碳 水合物不同,对于 II 型水合物,随着大晶穴的晶穴 占有率的增加,低频声子导热对水合物导热起到的 作用也变得显著,高频声子和低频声子导热均对水 合物导热起到重要作用。(2)当气体水合物结构一 定时,温度越低,密度越大,等温压缩系数越低, 声学速度越高,比热容越小。晶穴占有率均为100%

• 147 •

时,与II型二元水合物相比,在相同的温度和压力 条件下,I型CO2水合物密度更大,等温压缩系数 更小,声学速度更大,比热容更大。密度和比热容 均随着晶穴占有率的降低而降低。

拟

II型 CO₂水合物及多组晶穴占有率下 II型 CO₂+CP二元水合物热物性的测试和导热机理的分析,为热力学促进剂环戊烷作用下二氧化碳水合物 在空调蓄冷等领域的应用提供了基础数据,对于蓄 冷量等参数的计算提供了依据。但是,本文对导热 机理部分的研究尚不够深入。接下来,需要从声子 输运的角度进一步研究不同结构下水合物的导热 机理。另外,量子效应对分子动力学模拟的结果也 需要进一步探讨。

参考文献:

- ED Sloan. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003,426:353-363.
- [2] Wang M, Sun Z G, Li C H, et al. Equilibrium Hydrate Dissociation Conditions of CO₂+ HCFC141b or Cyclopentane[J]. Journal of Chemical & Engineering Data, 2016,61:3250-3253.
- [3] J Li, Z Mi, YM Wei, et al. Flexible options to provide energy for capturing carbon dioxide in coal-fired power plants under the clean development mechanism[J]. MITIG ADAPT STRAT GL, 2019,24:1483.
- [4] H Yang, Z Xu, M Fan, et al. Progress in carbon dioxide separation and capture: a review[J]. J Environ Sci (China), 2008,20:14-27.
- [5] S Hong, S Moon, Y Lee, et al. Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO₂ hydrates for potential application to seawater desalination[J]. CHEM ENG J, 2019,363:99.
- [6] X Wang, M Dennis. Phase equilibrium and formation behavior of CO₂-TBAB semi-clathrate hydrate at low pressures for cold storage air conditioning applications[J]. CHEM ENG SCI, 2016,155: 294-305.
- [7] H Zhou, IEE de Sera, CA Infante Ferreira. Modelling and experimental validation of a fluidized bed based CO₂ hydrate cold storage system[J]. APPL ENERG, 2015,158:433-445.

- [8] English N J, Tse J S. Perspectives on Hydrate Thermal Conductivity[J]. Energies, 2010,3(12):1934-1942.
- [9] W F Waite, L A Stern, S H Kirby, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. Geophysical Journal International, 2007,169:767-774.
- [10] Y P Handa. Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter[J]. The Journal of Chemical Thermodynamics, 1986,18:915-921.
- [11] Nakagawa, A Hachikubo, H Shoji. Dissociation and specific heats of gas hydrates under submarine and sublacustrine environments[J]. In Proceedings of 6th International Conference on Gas Hydrate, Vancouver, 2008.
- [12] D G Leaist, J J Murray, M L Post, et al. Enthalpies of decomposition and heat capacities of ethylene oxide and tetrahydrofuran hydrates[J]. The Journal of Physical Chemistry, 1982,86:4175-4178.
- [13] O Yamamuro, M Oguni, T Matsuo, et al. Calorimetric study of pure and KOH-doped tetrahydrofuran clathrate hydrate[J]. Journal of Physics and Chemistry of Solids, 1988,49:425-434.
- [14] Lee J, Kim K S, Seo Y. Thermodynamic, structural, and kinetic studies of cyclopentane+ CO₂ hydrates: Applications for desalination and CO₂ capture[J]. Chemical Engineering Journal, 2019,375:121974.
- [15] Takeuchi F, Hiratsuka M, Ohmura R, et al. Water proton configurations in structures I, II, and H clathrate hydrate unit cells[J]. The Journal of chemical physics, 2013,138(12):124504.
- [16] J Costandy, VK Michalis, IN Tsimpanogiannis, et al. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates[J]. J CHEM PHYS, 2015,143:094506.
- [17] JG Harris, KH Yung. Carbon Dioxide's Liquid-Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model[J]. JOURNAL OF

PHYSICAL CHEMISTRY, 1995,99:12021-12024.

- [18] Wolfgang, Damm, Antonio, et al. OPLS all-atom force field for carbohydrates[J]. Journal of Computational Chemistry, 1997.
- [19] 李佳,梁贞菊,王照亮,等.不同分子模型对甲烷水合物 分解微观特性表征[J].化工学报,2020,71(3):61-70.
- [20] Wang Z L, Yuan K P, Tang D W. Thermal Transport in Methane Hydrate by Molecular Dynamics and Phonon Inelastic Scattering[J]. 中国物理快报:英文版,2015, 32(10):72-75.
- [21] 王新伟,张中印,孙方远,等.基于TDTR 法测量单晶硅的 声子平均自由程[J]. 中国石油大学学报: 自然科学 版,2019,(3):145-150.
- [22] J Li, ZL Wang. Fluctuation-dissipation analysis of nonequilibrium thermal transport at the hydrate dissociation interface, PHYS CHEM CHEM PHYS, 2019,21:23492.
- [23] 徐哲.天然气水合物内部热输运分子动力学研究[D].青岛:中国石油大学(华东),2017.
- [24] Kondori J, James L, Zendehboudi S. Molecular scale modeling approach to evaluate stability and dissociation of methane and carbon dioxide hydrates[J]. Journal of Molecular Liquids, 2019,297:111503.
- [25] 姚贵策.水合物热物理特性研究[D].青岛:中国石油大学 (华东),2015.
- [26] Jiang H, Jordan K D. Comparison of the Properties of

Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations [J]. Journal of Physical Chemistry C, 2010,114(12):5555-5564.

- [27] 万丽华,梁德青,李栋梁,等. 二氧化碳水合物导热和热 扩散特性[J].化工学报,2016,67(10):4169-4175.
- [28] A A Chialvo, Mohammed Houssa, P T Cummings. Molecular Dynamics Study of the Structure and Thermophysical Properties of Model sI Clathrate Hydrates[J]. The Journal of Physical Chemistry B, 2002,106(2):442-451.
- [29] Ning F L, Glavatskiy K, Ji Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH₄ and CO₂ hydrate mixtures using molecular dynamics simulations[J]. Physical Chemistry Chemical Physics, 2015,17(4):2869-2883.
- [30] Jiang H, Myshakin E M, Jordan K D, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate[J]. Journal of Physical Chemistry B, 2008,112(33):10207-16.
- [31] Andersson P, Ross R G. Effect of guest molecule size on the thermal conductivity and heat capacity of clathrate hydrates [J]. Journal of Physics C Solid State Physics, 1983,16(8):1423-1432.
- [32] 黄文件,刘道平,周文铸,等.天然气水合物的热物理性 质[J].天然气化工:C1 化学与化工,2004,29(4):66-71.