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Advances in CO; Adsorption Performance of Amine-Modified Mesoporous Molecular Sieves
Wang Yangjun Xie Yongliang
( Southwest Jiaotong University, School of Mechanical Engineering, Chengdu, 610031 )

[ Abstract ] Against the background of the increasingly severe situation of global climate change, efficient CO, capture
technology has become an important need to meet the environmental challenges. At this stage, carbon capture and storage (CCS)
technology is regarded as an effective way to alleviate the CO2 emission problem in the short term. CO: capture systems with liquid
amines have been commercially applied, but they have inherent drawbacks such as high regeneration energy consumption,
equipment corrosion and solvent degradation. Finding new adsorbent materials has become a new research goal for researchers. In
this paper, a systematic review of the research progress in the field of mesoporous molecular sieve modification in recent years is
conducted, mainly investigating the application of three techniques, namely, impregnation, amine grafting, and ion exchange, in the
process of COz capture, and a comprehensive comparison of the three techniques is made. The contributions of each method in CO»
capture research are summarized, the challenges faced in the development of CO> adsorption technology are analyzed, and the
prospects for future research in this field are presented.
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Fig.1 (a) Structures of different amines and their corresponding reactions with CO»; (b) CO; adsorption capacities of

HZSM5-25-2 modified with different amine groups!?*!
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Fig.2 Schematic illustration of the most prominent possible species and interactions formed during CO; chemisorption on

(a) primary amine-, (b) diamine-, and (c) triamine-functionalized SBA-15 in the presence of moisturel3¥.
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Table 1 Comparison of CO; adsorption performance of different adsorbents
Bgis PR M LR LR CO, T A&
: R AL ’ ’ R 25 1 5%
72 /(m?/g) /(ecm?/g) /nm /(mmol/g)
ZSM-TEPA 19.045 0.049 5.59 100°C, 3k 7g/g 1.8 [21]
13X-PEI-60 131 0.003 11.6 70°C, 0.1MPa, 60wt% 1.22 [22]
20°C, 300ml/min,
HZSM5-25-2-MEA 417.633 0.308 2.647 2.647 [23]
55wt%
R 20°C, 300ml/min,
} HZSM5-38-2-MEA 391.545 0.274 2.769 2.769 [23]
% 55wt%
20°C, 300ml/min,
HZSM5-50-2-MEA 373.563 0.286 3.83 3.83 [23]
55wt%
50% Y-EDA 314.5 0.1 — 30°C, 50wt% 1.069 [24]
70% Y-PEI 1.2 e — 30°C, 70wt% 0.922 [24]
LTA-125 551 0.11 13.1 60°C, 0.015MPa 23 [29]
2257 25°C, 400ppm ¥ CO,
) PEI/PME(40) 58 0.18 8.4 731 [30]
% &1, 40wt%
SBA-15-130 434 1.13 — - 1.88 [32]
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Table 1 Comparison of CO; adsorption performance of different adsorbents
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% 79}
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Ni(II)/SSZ-13 836 0.44 — 25°C, 0.IMPa 3.12 [39]
ed Cal3X 508 0.2518 2.2961 30°C, 0.12MPa 4.12 [42]
L K-ERI — — — 25°C, 0.1MPa 2.49 [43]
ik Na-SSZ-13 764 0.302 — 0°C, 0.1MPa 4.48 [44]
Li-Na-SSZ-13 684 0.325 — 0°C, 0.1MPa 3.59 [44]
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