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Research on Optimal Load Distribution Strategy for
Multi-chiller System Using the Tree Seed Optimization Algorithm
Li Xinmei! Hu Yuanyang? Li Shuhong? Lin Hao! Huang Yiran' Yong Lingyu'
( 1.Nanjing Fuca Automation Technology Co., Ltd, Nanjing, 210046;
2.School of Energy and Environment, Southeast University, Nanjing, 210096 )

[ Abstract ] Improper cooling load distribution in multi-chiller systems results in significant energy waste, while traditional
mathematical methods are constrained and challenging to generalize. Besides, meta-heuristic algorithms require further
development and additional application cases. This study aims to evaluate the performance of the Tree Seed Optimization
Algorithm (TSA) in solving the optimal load distribution problem and providing additional case studies. It compares the TSA with
three other algorithms, evaluating its performance in solving classical cases for the first time. Additionally, the chiller's
performance coefficients are fitted using measured data, and the algorithm's energy-saving effect is analyzed under varying load
rates. The results demonstrate the TSA's effectiveness in solving the optimal load distribution problem. Compared to the Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO), the TSA achieves maximum energy savings of 23.97% and 2.64%,
respectively. In practical scenarios, the TSA achieves a maximum energy saving of 34.03% and an average saving of 23.28%
compared to original strategy. This method holds significant value for energy savings in multi-chiller systems.
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Table 1 Performance coefficients and rated cooling capacities of each chiller in the classic case!!"!

ES WL S5 a b c d BUER 2/KW
1 399.345 -122.12 770.46 0 4502
2 287.116 80.04 700.48 0 4502
3 -120.505 1525.99 -502.14 0 4502
Z1
4 -19.121 898.76 98.15 0 4502
5 -95.029 1202.39 -352.16 0 4396
6 191.750 224.86 524.04 0 4396
1 104.09 166.57 -430.13 512.53 1583
2 -67.15 1177.79 -2174.53 1456.53 1583
2 2
3 384.71 -779.13 1151.42 -63.20 3517
4 541.63 413.48 -3626.50 4021.41 3517
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Table 2 Performance coefficients and fitting performance of each chiller in the actual case

ML a b ¢ d HE VA kW R

1 0.26 279.52 -376.47 443 48 1351 0.98

2 3.62 137.61 328.39 -296.16 1351 0.96

3 0.79 116.85 25.29 -7.79 903 0.97
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Table 3 Chiller load distribution and energy consumption of different algorithms in the classic case 1

GAll PSOU2! ISSAY! TSA
B AT AW HLEH

PLR P/kWh PLR P/kWh PLR P/kWh PLR P/kWh

1 0.7052 0.8026 0.8127 0.8127

2 0.7693 0.7799 0.7496 0.7496

24120 3 0.9868 0.9996 1.0000 1.0000
4766.33 4739.78 4738.58 4738.58

(90%) 4 0.9868 0.9998 1.0000 1.0000

5 0.9794 0.9999 1.0000 1.0000

6 0.8842 0.8183 0.8386 0.8386

1 0.6207 0.7606 0.7277 0.7277

2 0.7742 0.6555 0.6562 0.6561

22780 3 0.9927 1.0000 1.0000 1.0000
4459.16 4423.04 4421.65 4421.65

(85%) 4 0.9589 1.0000 1.0000 1.0000

5 0.9956 1.0000 1.0000 1.0000

6 0.7595 0.6835 0.7165 0.7165
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Table 3  Chiller load distribution and energy consumption of different algorithms in the classic case 1

GAlll PSSOl ISSAI! TSA
SR AW LA

PLR P/kWh PLR P/kWh PLR P/kWh PLR P/kWh

1 0.8099 0.6591 0.6427 0.6427

2 0.5474 0.5798 0.5627 0.5626

21440 3 0.9878 0.9991 1.0000 1.0000
4185.87 4147.69 4143.71 4143.71

(80%) 4 0.9624 0.9979 1.0000 1.0000

5 0.9897 0.9921 1.0000 1.0000

6 0.5029 0.5710 0.5945 0.5945

1 0.5797 0.7713 0.0000 0.0000

2 0.5621 0.7177 0.7150 0.7150

20107 3 0.9428 0.3000 1.0000 1.0000
3940.60 3921.07 3842.55 3842.55

(75%) 4 0.7908 0.9991 1.0000 1.0000

5 0.9951 1.0000 1.0000 1.0000

6 0.6339 0.7187 0.7934 0.7934

1 0.5831 0.6418 0.0000 0.0000

2 0.5767 0.6621 0.5835 0.5835

18760 3 0.5230 0.3301 1.0000 1.0000
3706.22 3642.55 3546.44 3546.44

(70%) 4 0.9497 0.9906 1.0000 1.0000

5 0.9521 0.9990 1.0000 1.0000

6 0.6207 0.5806 0.6217 0.6217

x4 TRIEEEZARE] 2 RN BERR I EC KRR

Table 4 Chiller load distribution and energy consumption of different algorithms in the classic case 2

. GAllo PSOR2 ISSALY! TSA
AT /RW ML

PLR P/kWh PLR P/kWh PLR P/kWh PLR P/kWh

1 0.9925 0.9900 0.9909 0.9909

9179 2 0.9487 0.9100 0.9059 0.9059
1862.18 1857.30 1857.30 1857.30

(90%) 3 1.0000 1.0000 1.0000 1.0000

4 0.7366 0.7600 0.7565 0.7565

1 0.8611 0.8300 0.8287 0.8289

8159 2 0.8132 0.8100 0.8055 0.8056
1457.23 1455.66 1455.66 1455.66

(80%) 3 0.8809 0.9000 0.8967 0.8966

4 0.6859 0.6900 0.6879 0.6879

1 0.6292 0.7300 0.7265 0.7262

7140 2 0.7605 0.7400 0.7401 0.7402
1183.80 1178.14 1178.14 1178.14

(70%) 3 0.7557 0.7200 0.7216 0.7216

4 0.6360 0.6500 0.6484 0.6485

1 0.5956 0.6000 0.6036 0.6035

6120 2 0.6982 0.6600 0.6576 0.6576
1001.62 998.53 998.53 998.53

(60%) 3 0.5710 0.5600 0.5648 0.5648

4 0.5874 0.6100 0.6077 0.6077
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Table 4 Chiller load distribution and energy consumption of different algorithms in the classic case 2

GAUY PSOL20] ISSAUII TSA
AW ML
PLR P/kWh PLR P/kWh PLR P/kWh PLR P/kWh
1 0.5962 0.6100 0.6066 0.6068
5100 2 0.3636 0.0000 0.0000 0.0000
907.72 820.07 820.07 820.07
(50%) 3 0.4423 0.5700 0.5684 0.5683
4 0.5758 0.6100 0.6087 0.6087
1 0.3335 0.0000 0.0000 0.0000
4080 2 0.3157 0.0000 0.0000 0.0000
856.30 651.07 651.07 651.07
(40%) 3 0.3246 0.5600 0.5551 0.5551
4 0.5436 0.6000 0.6049 0.6049
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TRESCRMEER TR X genetic algorithm for reducing energy consumption[J].
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